Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 166: 89-97, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29549720

RESUMO

Excessive bleeding and resulting complications are a major cause of death in both trauma and surgical settings. Recently, there have been a number of investigations into the design of synthetic hemostatic agents with platelet-mimicking activity to effectively treat patients suffering from severe hemorrhage. We developed platelet-like particles from microgels composed of polymers carrying polyethylene glycol (PEG) side-chains and fibrin-targeting single domain variable fragment antibodies (PEG-PLPs). Comparable to natural platelets, PEG-PLPs were found to enhance the fibrin network formation in vitro through strong adhesion to the emerging fibrin clot and physical, non-covalent cross-linking of nascent fibrin fibers. Furthermore, the mechanical reinforcement of the fibrin mesh through the incorporation of particles into the network leads to a ∼three-fold decrease of the overall clot permeability as compared to control clots. However, transport of biomolecules through the fibrin clots, such as peptides and larger proteins is not hindered by the presence of PEG-PLPs and the altered microstructure. Compared to control clots with an elastic modulus of 460+/-260 Pa, PEG-PLP-reinforced fibrin clots exhibit higher degrees of stiffness as demonstrated by the significantly increased average Younǵs modulus of 1770 +/±720 Pa, as measured by AFM force spectroscopy. Furthermore, in vitro degradation studies with plasmin demonstrate that fibrin clots formed in presence of PEG-PLPs withstand hydrolysis for 24 h, indicating enhanced stabilization against exogenous fibrinolysis. The entire set of data suggests that the designed platelet-like particles have high potential for use as hemostatic agents in emergency medicine and surgical settings.


Assuntos
Fibrina/química , Polietilenoglicóis/química , Polímeros/química , Módulo de Elasticidade
2.
PLoS One ; 12(7): e0181369, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719648

RESUMO

We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.


Assuntos
Fenômenos Mecânicos , Polietilenoglicóis/química , Polimerização , Módulo de Elasticidade , Géis , Hidrólise , Nanoporos , Propriedades de Superfície
3.
Soft Matter ; 11(10): 2018-28, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25648590

RESUMO

Microgels are colloidally stable, hydrogel microparticles that have previously been used in a range of (soft) material applications due to their tunable mechanical and chemical properties. Most commonly, thermo and pH-responsive poly(N-isopropylacrylamide) (pNIPAm) microgels can be fabricated by precipitation polymerization in the presence of the co-monomer acrylic acid (AAc). Traditionally pNIPAm microgels are synthesized in the presence of a crosslinking agent, such as N,N'-methylenebisacrylamide (BIS), however, microgels can also be synthesized under 'crosslinker free' conditions. The resulting particles have extremely low (<0.5%), core-localized crosslinking resulting from rare chain transfer reactions. AFM nanoindentation of these ultralow crosslinked (ULC) particles indicate that they are soft relative to crosslinked microgels, with a Young's modulus of ∼10 kPa. Furthermore, ULC microgels are highly deformable as indicated by a high degree of spreading on glass surfaces and the ability to translocate through nanopores significantly smaller than the hydrodynamic diameter of the particles. The size and charge of ULCs can be easily modulated by altering reaction conditions, such as temperature, monomer, surfactant and initiator concentrations, and through the addition of co-monomers. Microgels based on the widely utilized, biocompatible polymer polyethylene glycol (PEG) can also be synthesized under crosslinker free conditions. Due to their softness and deformability, ULC microgels are a unique base material for a wide variety of biomedical applications including biomaterials for drug delivery and regenerative medicine.


Assuntos
Resinas Acrílicas/química , Hidrogéis/química , Acrilamidas , Acrilatos/química , Sulfato de Amônio/química , Reagentes de Ligações Cruzadas/química , Isocianatos/química , Polietilenoglicóis/química , Reologia , Silanos/química , Dodecilsulfato de Sódio/química
4.
Langmuir ; 28(40): 14373-85, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22989142

RESUMO

We present a set of Langmuir binding models in which electrostatic cooperativity effects to protein sorption is incorporated in the spirit of Guoy-Chapman-Stern models, where the global substrate (microgel) charge state is modified by bound reactants (charged proteins). Application of this approach to lysozyme sorption to oppositely charged core-shell microgels allows us to extract the intrinsic, binding affinity of the protein to the gel, which is salt concentration independent and mostly hydrophobic in nature. The total binding affinity is found to be mainly electrostatic in nature, changes many orders of magnitude during the sorption process, and is significantly influenced by osmotic deswelling effects. The intrinsic binding affinity is determined to be about 7 k(B)T for our system. We additionally show that Langmuir binding models and those based on excluded-volume interactions are formally equivalent for low to moderate protein packing, if the nature of the bound state is consistently defined. Having appreciated this, a more quantitative interpretation of binding isotherms in terms of separate physical interactions is possible in the future for a wide variety of experimental approaches.


Assuntos
Géis/química , Muramidase/química , Eletricidade Estática , Adsorção , Animais , Osmose , Polímeros/química , Ligação Proteica , Sais/química , Propriedades de Superfície
5.
Biomacromolecules ; 12(11): 3936-44, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21970466

RESUMO

We present a study of the adsorption of a positively charged protein to a positively charged spherical polyelectrolyte brush (SPB) by isothermal titration calorimetry (ITC). ITC is used to determine the adsorption isotherm as a function of temperature and of salt concentration (at physiological pH 7.2). At low ionic strength, RNase A is strongly adsorbed by the SPB particles despite the fact that both the SPB particles and the protein are positively charged. Virtually no adsorption takes place when the ionic strength is raised through added salt. This is strong evidence for counterion release as the primary driving force for protein adsorption. We calculated that ~2 counterions were released upon RNase A binding. The adsorption of RNase A into like-charged SPB particles is entropy-driven, and protein protonation was not significant. Temperature-dependent measurements showed a disagreement between the enthalpy derived via the van't Hoff equation and the calorimetric enthalpy. Further analysis shows that van't Hoff analysis leads to the correct enthalpy of adsorption. The additional contributions to the measured enthalpy are potentially sourced from unlinked equilibria such as conformational changes that do not contribute to the binding equilibrium.


Assuntos
Enzimas Imobilizadas/química , Polímeros/química , Compostos de Amônio Quaternário/química , Ribonuclease Pancreático/química , Adsorção , Algoritmos , Soluções Tampão , Calorimetria , Cátions , Concentração Osmolar , Ligação Proteica , Termodinâmica , Titulometria
6.
J Phys Chem B ; 113(49): 16039-45, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19905007

RESUMO

We present a quantitative study of the catalytic activity of beta-d-glucosidase from almonds adsorbed on thermosensitive microgels. The core-shell particles used as a carrier system consist of a solid polystyrene core onto which a poly(N-isopropylacrylamide) (PNiPA) network is grafted. In the swollen state of this microgel, i.e., below the critical solution temperature (LCST) of PNiPA, high amounts of enzyme can be immobilized into the PNiPA network without loss of colloidal stability. The enzymatic activity of beta-d-glucosidase in its native form and in the adsorbed state was analyzed in terms of Michaelis-Menten kinetics. Moreover, the dependence of the enzymatic activity on temperature was investigated. We demonstrate that the enzymatic activity of beta-d-glucosidase adsorbed on such a core-shell microgel is increased by a factor of more than three compared to its activity in solution. This is in marked contrast to other carrier systems that usually lead to a strong decrease of enzymatic activity. Both the high loading capacity of the carrier observed and the increase of the catalytic activity of immobilized beta-d-glucosidase are traced back to the formation of strong interactions between the enzyme and microgel. Studies by Fourier-transform infrared (FT-IR) spectroscopy identify the formation of hydrogen bonds as driving forces for the adsorption. Hydrogen bonding may also be the reason for the enhanced activity.


Assuntos
Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Géis/química , Temperatura , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Acrilamidas/química , Resinas Acrílicas , Adsorção , Polímeros/química , Poliestirenos/química , Prunus/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...