Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(9): 5245-5264, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424438

RESUMO

Organic materials in electrochromic device applications possess a number of advantages over transition metal oxides like WO3 such as ease of synthesis and tunability, flexibility, and derivability from renewable feedstocks. However, these advantages are offset by the need to use organic solvents in their processing which are often flammable and/or toxic. Therefore, it is of paramount importance to the longterm economic and environmental sustainability of organic electronics research to develop water soluble organic materials. Herein, we describe the advances made in developing water soluble organic electronic materials for electrochromic applications. We here classify electrochromic materials into two broad categories: those that transition between colourless and coloured states (Type I) and those that transition between differently coloured states (Type II). The methods by which organic electrochromes are made water soluble are described in detail along with their potential applications in order to promote research in water soluble organic electronic materials in general.

2.
Molecules ; 23(4)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673207

RESUMO

Herein we report on the synthesis of an N-annulated perylene diimide (PDI) disubstituted thieno[3,4-c]pyrrole-4,6-dione (TPD) molecular acceptor (PDI-TPD-PDI) by direct heteroarylation (DHA) methods. Three sets of DHA conditions that explore the effects of solvent, temperature, and catalyst were employed to find the optimal conditions for the synthesis of two PDI-TPD-PDI derivatives. We then selected one PDI-TPD-PDI for use as a non-fullerene acceptor in organic solar cell devices with the donor polymer PBDB-T. Active layer bulk-heterojunction blends were modified using several post-deposition treatments, including thermal annealing, solvent vapour annealing, and high boiling solvent additives. It was found that active layers cast from o-dichlorobenzene with a 3% v/v diphenylether additive yielded films with adequate phase separation, and subsequently gave the best organic solar cell performance, with power conversion efficiencies greater than 3%.


Assuntos
Perileno/química , Energia Solar , Fontes de Energia Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...