Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Blood Adv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739706

RESUMO

A variety of autosomal recessive mutations in the JAGN1 gene cause severe congenital neutropenia (CN). However, the underlying pathomechanism remains poorly understood, mainly due to the limited availability of primary hematopoietic stem cells from JAGN1-CN patients and the absence of animal models. In this study, we aimed to address these limitations by establishing a zebrafish model of JAGN1-CN. We found two paralogs of the human JAGN1 gene, jagn1a and jagn1b, which play distinct roles during zebrafish hematopoiesis. Using various approaches such as morpholino-based knockdown, CRISPR/Cas9-based gene-editing, and misexpression of a jagn1b harboring a specific human mutation, we successfully developed neutropenia while leaving other hematopoietic lineages unaffected. Further analysis of our model revealed significant upregulation of apoptosis and genes involved in unfolded protein response (UPR). However, neither UPR nor apoptosis is the primary mechanism leading to neutropenia in zebrafish. Instead, Jagn1b has a critical role in G-CSFR signaling and steady-state granulopoiesis, shedding light on the pathogenesis of neutropenia associated with JAGN1 mutations. The establishment of a zebrafish model for JAGN1-CN represents a significant advancement in understanding the specific pathological pathways underlying the disease. This model provides a valuable in vivo tool for further investigation and exploration of potential therapeutic strategies.

2.
Mol Ther ; 32(6): 1628-1642, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38556793

RESUMO

Severe congenital neutropenia (CN) is an inherited pre-leukemia bone marrow failure syndrome commonly caused by autosomal-dominant ELANE mutations (ELANE-CN). ELANE-CN patients are treated with daily injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, some patients do not respond to rhG-CSF, and approximately 15% of ELANE-CN patients develop myelodysplasia or acute myeloid leukemia. Here, we report the development of a curative therapy for ELANE-CN through inhibition of ELANE mRNA expression by introducing two single-strand DNA breaks at the opposing DNA strands of the ELANE promoter TATA box using CRISPR-Cas9D10A nickases-termed MILESTONE. This editing effectively restored defective neutrophil differentiation of ELANE-CN CD34+ hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, without affecting the functions of the edited neutrophils. CRISPResso analysis of the edited ELANE-CN CD34+ HSPCs revealed on-target efficiencies of over 90%. Simultaneously, GUIDE-seq, CAST-Seq, and rhAmpSeq indicated a safe off-target profile with no off-target sites or chromosomal translocations. Taken together, ex vivo gene editing of ELANE-CN HSPCs using MILESTONE in the setting of autologous stem cell transplantation could be a universal, safe, and efficient gene therapy approach for ELANE-CN patients.


Assuntos
Sistemas CRISPR-Cas , Síndrome Congênita de Insuficiência da Medula Óssea , Edição de Genes , Terapia Genética , Elastase de Leucócito , Neutropenia , Regiões Promotoras Genéticas , Edição de Genes/métodos , Humanos , Neutropenia/congênito , Neutropenia/terapia , Neutropenia/genética , Terapia Genética/métodos , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Animais , Camundongos , Neutrófilos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mutação , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Doenças Genéticas Ligadas ao Cromossomo X/genética
4.
Haematologica ; 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855057

RESUMO

Mutations in the ELANE gene, encoding the neutrophil elastase (NE) protein, are responsible for most CyN cases and approximately 25 % of CN cases. In CN and in CyN, a median of 2.8 % of CD34+ cells were early CD49f+ hematopoietic stem cells (eHSC) that did not express ELANE and thus escape from the unfolded protein response (UPR) caused by mutated NE. In CyN, the CD49f+ cells respond to G-CSF with a significant upregulation of the hematopoietic stem-cell-specific transcription factors, C/EBP/, MLL1, HOXA9, MEIS1, and HLF during the ascending arm of the cycle, resulting in the differentiation of myeloid cells to mature neutrophils at the cycle peak. However, NE protein released by neutrophils at the cycle's peak caused a negative feedback loop on granulopoiesis through the proteolytic digestion of G-CSF. In contrast, in CN patients, CD49f+ cells failed to express mRNA levels of HSC-specific transcription factors mentioned above. Rescue of C/EBP//expression in CN restored granulopoiesis.

6.
Br J Haematol ; 202(2): 393-411, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37193639

RESUMO

HAX1-related congenital neutropenia (HAX1-CN) is a rare autosomal recessive disorder caused by pathogenic variants in the HAX1 gene. HAX1-CN patients suffer from bone marrow failure as assessed by a maturation arrest of the myelopoiesis revealing persistent severe neutropenia from birth. The disorder is strongly associated with severe bacterial infections and a high risk of developing myelodysplastic syndrome or acute myeloid leukaemia. This study aimed to describe the long-term course of the disease, the treatment, outcome and quality of life in patients with homozygous HAX1 mutations reported to the European branch of the Severe Chronic Neutropenia International Registry. We have analysed a total of 72 patients with different types of homozygous (n = 68), compound heterozygous (n = 3), and digenic (n = 1) HAX1 mutations. The cohort includes 56 paediatric (<18 years) and 16 adult patients. All patients were initially treated with G-CSF with a sufficient increase in absolute neutrophil counts. Twelve patients required haematopoietic stem cell transplantation for leukaemia (n = 8) and non-leukaemic indications (n = 4). While previous genotype-phenotype reports documented a striking correlation between two main transcript variants and clinical neurological phenotypes, our current analysis reveals novel mutation subtypes and clinical overlaps between all genotypes including severe secondary manifestations, e.g., high incidence of secondary ovarian insufficiency.


Assuntos
Neutropenia , Qualidade de Vida , Humanos , Proteínas/genética , Mutação , Neutropenia/congênito , Sistema de Registros , Proteínas Adaptadoras de Transdução de Sinal/genética
7.
Hemasphere ; 7(4): e872, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37008163

RESUMO

Neutropenia, as an isolated blood cell deficiency, is a feature of a wide spectrum of acquired or congenital, benign or premalignant disorders with a predisposition to develop myelodysplastic neoplasms/acute myeloid leukemia that may arise at any age. In recent years, advances in diagnostic methodologies, particularly in the field of genomics, have revealed novel genes and mechanisms responsible for etiology and disease evolution and opened new perspectives for tailored treatment. Despite the research and diagnostic advances in the field, real world evidence, arising from international neutropenia patient registries and scientific networks, has shown that the diagnosis and management of neutropenic patients is mostly based on the physicians' experience and local practices. Therefore, experts participating in the European Network for the Innovative Diagnosis and Treatment of Chronic Neutropenias have collaborated under the auspices of the European Hematology Association to produce recommendations for the diagnosis and management of patients across the whole spectrum of chronic neutropenias. In the present article, we describe evidence- and consensus-based guidelines for the definition and classification, diagnosis, and follow-up of patients with chronic neutropenias including special entities such as pregnancy and the neonatal period. We particularly emphasize the importance of combining the clinical findings with classical and novel laboratory testing, and advanced germline and/or somatic mutational analyses, for the characterization, risk stratification, and monitoring of the entire spectrum of neutropenia patients. We believe that the wide clinical use of these practical recommendations will be particularly beneficial for patients, families, and treating physicians.

9.
Nat Commun ; 13(1): 2948, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618709

RESUMO

Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Hematopoese , Fator Estimulador de Colônias de Granulócitos/genética , Células-Tronco Hematopoéticas , Humanos , Neutrófilos
10.
Leukemia ; 36(3): 675-686, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732858

RESUMO

With an incidence of ~50%, the absence or reduced protein level of p53 is much more common than TP53 mutations in acute myeloid leukemia (AML). AML with FLT3-ITD (internal tandem duplication) mutations has an unfavorable prognosis and is highly associated with wt-p53 dysfunction. While TP53 mutation in the presence of FLT3-ITD does not induce AML in mice, it is not clear whether p53 haploinsufficiency or loss cooperates with FLT3-ITD in the induction of AML. Here, we generated FLT3-ITD knock-in; p53 knockout (heterozygous and homozygous) double-transgenic mice and found that both alterations strongly cooperated in the induction of cytogenetically normal AML without increasing the self-renewal potential. At the molecular level, we found the strong upregulation of Htra3 and the downregulation of Lin28a, leading to enhanced proliferation and the inhibition of apoptosis and differentiation. The co-occurrence of Htra3 overexpression and Lin28a knockdown, in the presence of FLT3-ITD, induced AML with similar morphology as leukemic cells from double-transgenic mice. These leukemic cells were highly sensitive to the proteasome inhibitor carfilzomib. Carfilzomib strongly enhanced the activity of targeting AXL (upstream of FLT3) against murine and human leukemic cells. Our results unravel a unique role of p53 haploinsufficiency or loss in the development of FLT3-ITD + AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Haploinsuficiência , Leucemia Mieloide Aguda/genética , Proteína Supressora de Tumor p53/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Duplicação Gênica , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Mutação
11.
Cell Stem Cell ; 28(5): 906-922.e6, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894142

RESUMO

Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome that can evolve to acute myeloid leukemia (AML). Mutations in CSF3R and RUNX1 are frequently observed in CN patients, although how they drive the transition from CN to AML (CN/AML) is unclear. Here we establish a model of stepwise leukemogenesis in CN/AML using CRISPR-Cas9 gene editing of CN patient-derived iPSCs. We identified BAALC upregulation and resultant phosphorylation of MK2a as a key leukemogenic event. BAALC deletion or treatment with CMPD1, a selective inhibitor of MK2a phosphorylation, blocked proliferation and induced differentiation of primary CN/AML blasts and CN/AML iPSC-derived hematopoietic stem and progenitor cells (HSPCs) without affecting healthy donor or CN iPSC-derived HSPCs. Beyond detailing a useful method for future investigation of stepwise leukemogenesis, this study suggests that targeting BAALC and/or MK2a phosphorylation may prevent leukemogenic transformation or eliminate AML blasts in CN/AML and RUNX1 mutant BAALC(hi) de novo AML.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Neutropenia , Síndrome Congênita de Insuficiência da Medula Óssea , Humanos , Leucemia Mieloide Aguda/genética , Mutação/genética , Proteínas de Neoplasias/genética , Neutropenia/congênito , Neutropenia/genética , Oncogenes
12.
Stem Cell Res Ther ; 12(1): 112, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546767

RESUMO

BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT) regulates cellular functions through the protein deacetylation activity of nicotinamide adenine dinucleotide (NAD+)-dependent sirtuins (SIRTs). SIRTs regulate functions of histones and none-histone proteins. The role of NAMPT/SIRT pathway in the regulation of maintenance and differentiation of human-induced pluripotent stem (iPS) cells is not fully elucidated. METHODS: We evaluated the effects of specific inhibitors of NAMPT or SIRT2 on the pluripotency, proliferation, survival, and hematopoietic differentiation of human iPS cells. We also studied the molecular mechanism downstream of NAMPT/SIRTs in iPS cells. RESULTS: We demonstrated that NAMPT is indispensable for the maintenance, survival, and hematopoietic differentiation of iPS cells. We found that inhibition of NAMPT or SIRT2 in iPS cells induces p53 protein by promoting its lysine acetylation. This leads to activation of the p53 target, p21, with subsequent cell cycle arrest and induction of apoptosis in iPS cells. NAMPT and SIRT2 inhibition also affect hematopoietic differentiation of iPS cells in an embryoid body (EB)-based cell culture system. CONCLUSIONS: Our data demonstrate the essential role of the NAMPT/SIRT2/p53/p21 signaling axis in the maintenance and hematopoietic differentiation of iPS cells.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Citocinas/genética , Citocinas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Transdução de Sinais , Sirtuína 2/genética , Sirtuína 2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Haematologica ; 106(5): 1311-1320, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327498

RESUMO

Severe congenital neutropenia (CN) is a rare heterogeneous group of diseases, characterized by a granulocytic maturation arrest. Autosomal recessive mutations in the HAX1 gene are frequently detected in affected individuals. However, the precise role of HAX1 during neutrophil differentiation is poorly understood. To date, no reliable animal model has been established to study HAX1-associated CN. Here we show that knockdown of zebrafish hax1 impairs neutrophil development without affecting other myeloid cells and erythrocytes. Furthermore, we have found that interference with the Hax1 function decreases the expression level of key target genes of the granulocyte-colony stimulating factor (G-CSF) signaling pathway. The reduced neutrophil numbers in the morphants could be reversed by G-CSF, which is also the main therapeutic intervention for patients who have CN. Our results demonstrate that zebrafish is a suitable model for HAX1-associated neutropenia. We anticipate that this model will serve as an in vivo platform to identify new avenues for developing tailored therapeutic strategies for CN patients, particularly for those individuals that do not respond to the G-CSF treatment.


Assuntos
Neutropenia , Peixe-Zebra , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Síndrome Congênita de Insuficiência da Medula Óssea , Fator Estimulador de Colônias de Granulócitos , Humanos , Mutação , Neutropenia/induzido quimicamente , Neutropenia/congênito , Neutropenia/genética , Peixe-Zebra/genética
15.
Blood ; 137(10): 1340-1352, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33227812

RESUMO

Heterozygous de novo missense variants of SRP54 were recently identified in patients with congenital neutropenia (CN) who display symptoms that overlap with Shwachman-Diamond syndrome (SDS). Here, we investigate srp54 knockout zebrafish as the first in vivo model of SRP54 deficiency. srp54-/- zebrafish experience embryonic lethality and display multisystemic developmental defects along with severe neutropenia. In contrast, srp54+/- zebrafish are viable, fertile, and show only mild neutropenia. Interestingly, injection of human SRP54 messenger RNAs (mRNAs) that carry mutations observed in patients (T115A, T117Δ, and G226E) aggravated neutropenia and induced pancreatic defects in srp54+/- fish, mimicking the corresponding human clinical phenotypes. These data suggest that the various phenotypes observed in patients may be a result of mutation-specific dominant-negative effects on the functionality of the residual wild-type SRP54 protein. Overexpression of mutated SRP54 also consistently induced neutropenia in wild-type fish and impaired the granulocytic maturation of human promyelocytic HL-60 cells and healthy cord blood-derived CD34+ hematopoietic stem and progenitor cells. Mechanistically, srp54-mutant fish and human cells show impaired unconventional splicing of the transcription factor X-box binding protein 1 (Xbp1). Moreover, xbp1 morphants recapitulate phenotypes observed in srp54 deficiency and, importantly, injection of spliced, but not unspliced, xbp1 mRNA rescues neutropenia in srp54+/- zebrafish. Together, these data indicate that SRP54 is critical for the development of various tissues, with neutrophils reacting most sensitively to the loss of SRP54. The heterogenic phenotypes observed in patients that range from mild CN to SDS-like disease may be the result of different dominant-negative effects of mutated SRP54 proteins on downstream XBP1 splicing, which represents a potential therapeutic target.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Neutropenia/congênito , Partícula de Reconhecimento de Sinal/genética , Proteína 1 de Ligação a X-Box/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células HL-60 , Humanos , Modelos Moleculares , Mutação , Neutropenia/genética , Splicing de RNA , RNA Mensageiro/genética
16.
PLoS Biol ; 18(12): e3000919, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33351791

RESUMO

Computational protein design is rapidly becoming more powerful, and improving the accuracy of computational methods would greatly streamline protein engineering by eliminating the need for empirical optimization in the laboratory. In this work, we set out to design novel granulopoietic agents using a rescaffolding strategy with the goal of achieving simpler and more stable proteins. All of the 4 experimentally tested designs were folded, monomeric, and stable, while the 2 determined structures agreed with the design models within less than 2.5 Å. Despite the lack of significant topological or sequence similarity to their natural granulopoietic counterpart, 2 designs bound to the granulocyte colony-stimulating factor (G-CSF) receptor and exhibited potent, but delayed, in vitro proliferative activity in a G-CSF-dependent cell line. Interestingly, the designs also induced proliferation and differentiation of primary human hematopoietic stem cells into mature granulocytes, highlighting the utility of our approach to develop highly active therapeutic leads purely based on computational design.


Assuntos
Granulócitos/citologia , Engenharia de Proteínas/métodos , Diferenciação Celular , Células Cultivadas , Biologia Computacional/métodos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Granulócitos/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Humanos , Neutrófilos , Relação Estrutura-Atividade
17.
Ann Hematol ; 99(10): 2329-2338, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32821971

RESUMO

Patients with the pre-leukemia bone marrow failure syndrome called severe congenital neutropenia (CN) have an approximately 15% risk of developing acute myeloid leukemia (AML; called here CN/AML). Most CN/AML patients co-acquire CSF3R and RUNX1 mutations, which play cooperative roles in the development of AML. To establish an in vitro model of leukemogenesis, we utilized bone marrow lin- cells from transgenic C57BL/6-d715 Csf3r mice expressing a CN patient-mimicking truncated CSF3R mutation. We transduced these cells with vectors encoding RUNX1 wild type (WT) or RUNX1 mutant proteins carrying the R139G or R174L mutations. Cells transduced with these RUNX1 mutants showed diminished in vitro myeloid differentiation and elevated replating capacity, compared with those expressing WT RUNX1. mRNA expression analysis showed that cells transduced with the RUNX1 mutants exhibited hyperactivation of inflammatory signaling and innate immunity pathways, including IL-6, TLR, NF-kappaB, IFN, and TREM1 signaling. These data suggest that the expression of mutated RUNX1 in a CSF3R-mutated background may activate the pro-inflammatory cell state and inhibit myeloid differentiation.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/patologia , Células Mieloides/patologia , Mielopoese/genética , Neutropenia/congênito , Pré-Leucemia/genética , Receptores de Fator Estimulador de Colônias/genética , Animais , Divisão Celular , Ensaio de Unidades Formadoras de Colônias , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Perfilação da Expressão Gênica , Imunidade Inata , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutropenia/genética , Neutropenia/patologia , Pré-Leucemia/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Fator Estimulador de Colônias/fisiologia , Proteínas Recombinantes/genética , Organismos Livres de Patógenos Específicos
19.
Ann N Y Acad Sci ; 1466(1): 83-92, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32083314

RESUMO

Cyclic neutropenia (CyN) is a hematologic disorder in which peripheral blood absolute neutrophil counts (ANCs) show cycles of approximately 21-day intervals. The majority of CyN patients harbor ELANE mutations, but the mechanism of ANC cycling is unclear. We performed analysis of bone marrow (BM) subpopulations in CyN patients at the peak and the nadir of the ANC cycle and detected high proportions of BM hematopoietic stem cells (HSCs) and hematopoietic stem and progenitor cells (HSPCs) at the nadir of the ANC cycle, as compared with the peak. BM HSPCs produced fewer granulocyte colony-forming unit colonies at the ANC peak. To investigate the mechanism of cycling, we found that mRNA expression levels of ELANE and unfolded protein response (UPR)-related genes (ATF6, BiP (HSPA5), CHOP (DDIT3), and PERK (EIF2AK3)) were elevated, but antiapoptotic genes (Bcl-2 (BCL2) and bcl-xL (BCL2L1)) were reduced in CD34+ cells tested at the ANC nadir. Moreover, HSPCs revealed increased levels of reactive oxygen species and gH2AX at the ANC nadir. We suggest that in CyN patients, some HSPCs escape the UPR-induced endoplasmic reticulum (ER) stress and proliferate in response to granulocyte colony-stimulating factor (G-CSF) to a certain threshold at which UPR again affects the majority of HSPCs. There is a cyclic balance between ER stress-induced apoptosis of HSPCs and compensatory G-CSF-stimulated HSPC proliferation followed by granulocytic differentiation.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Elastase de Leucócito/genética , Neutropenia/etiologia , Resposta a Proteínas não Dobradas/fisiologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Seguimentos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Elastase de Leucócito/fisiologia , Mutação , Neutropenia/tratamento farmacológico , Neutropenia/metabolismo , Neutropenia/patologia , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
20.
Biochem Biophys Res Commun ; 524(4): 990-995, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32061389

RESUMO

Tumor suppressor protein p53 protects cells against malignant transformation mostly through transcriptional activation. Lysine acetylation is required to mediate activation of p53. The protein displays eight lysine residues and their evolutionary conservation argues for an essential role. The aim of this study was to investigate the significance of individual acetylation sites in mediating p53 functions. Differences in intracellular localization, protein expression levels, and transcriptional activity were investigated by overexpressing acetylation-deficient p53 variants in the colon carcinoma-derived p53 knock-out cell line HCT 116 p53(-/-). We found that not all lysine residues are equally capable of promoting p53's functions. Individual amino acid mutations or combinations thereof led to altered p53 expression levels, intracellular distribution, or transcriptional transactivation capacity, as compared to the wild-type protein. However, we observed that the choice of protein tag and expression vector could significantly alter obtained results on certain aspects of p53 function.


Assuntos
Neoplasias do Colo/genética , Mutação , Proteína Supressora de Tumor p53/genética , Acetilação , Células HCT116 , Humanos , Lisina/análise , Lisina/genética , Mutagênese , Ativação Transcricional , Proteína Supressora de Tumor p53/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...