Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Psychophysiology ; : e14647, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987662

RESUMO

Response inhibition is a crucial component of executive control. Although mainly studied in upper limb tasks, it is fully implicated in gait initiation. Here, we assessed the influence of proactive and reactive inhibitory control during gait initiation in healthy adult participants. For this purpose, we measured kinematics and electroencephalography (EEG) activity (event-related potential [ERP] and time-frequency data) during a modified Go/NoGo gait initiation task in 23 healthy adults. The task comprised Go-certain, Go-uncertain, and NoGo conditions. Each trial included preparatory and imperative stimuli. Our results showed that go-uncertainty resulted in delayed reaction time, without any difference for the other parameters of gait initiation. Proactive inhibition, that is, Go uncertain versus Go certain conditions, influenced EEG activity as soon as the preparatory stimulus. Moreover, both proactive and reactive inhibition influenced the amplitude of the ERPs (central P1, occipito-parietal N1, and N2/P3) and theta and alpha/low beta band activities in response to the imperative-Go-uncertain versus Go-certain and NoGo versus Go-uncertain-stimuli. These findings demonstrate that the uncertainty context; induced proactive inhibition, as reflected in delayed gait initiation. Proactive and reactive inhibition elicited extended and overlapping modulations of ERP and time-frequency activities. This study shows the protracted influence of inhibitory control in gait initiation.

2.
Brain Behav ; 14(7): e3617, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38970216

RESUMO

INTRODUCTION: Restrictive anorexia nervosa (AN) is associated with distorted perception of body shape, previously linked to hypoactivity and reduced excitability of the right inferior parietal lobe (rIPL). Here, we investigated the impact of high-frequency repetitive transcranial magnetic stimulation (HF rTMS) of the rIPL on body shape perception in patients with AN. METHODS: Seventeen patients with AN (median [Q1_Q3] age, 35 [27_39] years; disease duration, 12 [6_18] years) were randomly assigned to receive real or sham HF (10 Hz) rTMS of the rIPL over a period of 2 weeks, comprising 10 sessions. The primary outcome measure was the Body Shape Questionnaire (BSQ). Secondary outcomes included eating disorder symptoms, body mass index, mood, anxiety, and safety. Data collection were done at baseline, post-rTMS, and at 2 weeks and 3 months post-rTMS. RESULTS: Following both real and sham rTMS of the rIPL, no significant differences were observed in body shape perception or other parameters. Both real and sham rTMS interventions were deemed safe and well tolerated. Notably, serious adverse events were associated with the underlying eating and mood disorders, resulting in hospitalization for undernutrition (five patients) or suicidal attempts (two patients). CONCLUSION: This pilot study does not support the use of rTMS of the rIPL as an effective method for improving body shape perception in individuals with the restrictive form of AN. Further research is warranted to comprehensively explore both the clinical and neurophysiological effects of HF rTMS in this population.


Assuntos
Anorexia Nervosa , Imagem Corporal , Lobo Parietal , Estimulação Magnética Transcraniana , Humanos , Anorexia Nervosa/terapia , Anorexia Nervosa/fisiopatologia , Adulto , Feminino , Projetos Piloto , Estimulação Magnética Transcraniana/métodos , Lobo Parietal/fisiopatologia , Imagem Corporal/psicologia , Masculino , Resultado do Tratamento
4.
Mov Disord ; 39(5): 788-797, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419144

RESUMO

BACKGROUND: With disease-modifying drugs in reach for cerebellar ataxias, fine-grained digital health measures are highly warranted to complement clinical and patient-reported outcome measures in upcoming treatment trials and treatment monitoring. These measures need to demonstrate sensitivity to capture change, in particular in the early stages of the disease. OBJECTIVE: Our aim is to unravel gait measures sensitive to longitudinal change in the-particularly trial-relevant-early stage of spinocerebellar ataxia type 2 (SCA2). METHODS: We performed a multicenter longitudinal study with combined cross-sectional and 1-year interval longitudinal analysis in early-stage SCA2 participants (n = 23, including nine pre-ataxic expansion carriers; median, ATXN2 CAG repeat expansion 38 ± 2; median, Scale for the Assessment and Rating of Ataxia [SARA] score 4.8 ± 4.3). Gait was assessed using three wearable motion sensors during a 2-minute walk, with analyses focused on gait measures of spatio-temporal variability that have shown sensitivity to ataxia severity (eg, lateral step deviation). RESULTS: We found significant changes for gait measures between baseline and 1-year follow-up with large effect sizes (lateral step deviation P = 0.0001, effect size rprb = 0.78), whereas the SARA score showed no change (P = 0.67). Sample size estimation indicates a required cohort size of n = 43 to detect a 50% reduction in natural progression. Test-retest reliability and minimal detectable change analysis confirm the accuracy of detecting 50% of the identified 1-year change. CONCLUSIONS: Gait measures assessed by wearable sensors can capture natural progression in early-stage SCA2 within just 1 year-in contrast to a clinical ataxia outcome. Lateral step deviation represents a promising outcome measure for upcoming multicenter interventional trials, particularly in the early stages of cerebellar ataxia. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Progressão da Doença , Ataxias Espinocerebelares , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/genética , Estudos Longitudinais , Estudos Transversais , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/diagnóstico , Ataxina-2/genética
5.
Eur J Neurol ; 31(1): e16055, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37691341

RESUMO

BACKGROUND: Exergaming has been proposed to improve gait and balance disorders in Parkinson's disease (PD) patients. We aimed to assess the efficacy of a home-based, tailored, exergaming training system designed for PD patients with dopa-resistant gait and/or balance disorders in a controlled randomized trial. METHODS: We recruited PD patients with dopa-resistant gait and/or balance disorders. Patients were randomly assigned (1:1 ratio) to receive 18 training sessions at home by playing a tailored exergame with full-body movements using a motion capture system (Active group), or by playing the same game with the computer's keyboard (Control group). The primary endpoint was the between-group difference in the Stand-Walk-Sit Test (SWST) duration change after training. Secondary outcomes included parkinsonian clinical scales, gait recordings, and safety. RESULTS: Fifty PD patients were enrolled and randomized. After training, no significant difference in SWST change was found between groups (mean change SWST duration [SD] -3.71 [18.06] s after Active versus -0.71 [3.41] s after Control training, p = 0.61). Some 32% of patients in the Active and 8% in the Control group were considered responders to the training program (e.g., SWST duration change ≥2 s, p = 0.03). The clinical severity of gait and balance disorders also significantly decreased after Active training, with a between-group difference in favor of the Active training (p = 0.0082). Home-based training induced no serious adverse events. CONCLUSIONS: Home-based training using a tailored exergame can be performed safely by PD patients and could improve gait and balance disorders. Future research is needed to investigate the potential of exergaming.


Assuntos
Doença de Parkinson , Jogos de Vídeo , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Jogos Eletrônicos de Movimento , Terapia por Exercício , Equilíbrio Postural , Marcha , Di-Hidroxifenilalanina
6.
Neuroimage Clin ; 38: 103443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37247501

RESUMO

INTRODUCTION: Gait disorders and falls occur early in progressive supranuclear palsy (PSP-RS) and Caribbean atypical parkinsonism (Caribbean AP). However, the link between these signs and brain lesions has never been explored in these patient populations. Here, we investigate and compare the imaging factors that relate to gait and balance disorders in Caribbean AP and PSP-RS patients. METHODS: We assessed gait and balance using clinical scales and gait recordings in 16 Caribbean AP and 15 PSP-RS patients and 17 age-matched controls. We measured the grey and white matter brain volumes on 3 T brain MRI images. We performed a principal component analysis (PCA) including all the data to determine differences and similarities between groups, and explore the relationship between gait disorders and brain volumes. RESULTS: Both Caribbean AP patients and PSP-RS have marked gait and balance disorders with similar severity. In both groups, gait and balance disorders were found to be most strongly related to structural changes in the lateral cerebellum, caudate nucleus, and fronto-parietal areas. In Caribbean AP patients, gait disorders were also related to additional changes in the cortex, including frontal, insular, temporal and cuneus lobes, whereas in PSP-RS patients, additional white matter changes involved the mesencephalon and parahippocampal gyrus. CONCLUSION: Gait and balance disorders in Caribbean AP patients are mainly related to dysfunction of cortical brain areas involved in visuo-sensorimotor processing and self-awareness, whereas these signs mainly result from premotor-brainstem-cerebellar network dysfunction in PSP-RS patients, brain areas involved in initiation and maintenance of locomotor pattern and postural adaptation.


Assuntos
Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/patologia , Transtornos Parkinsonianos/diagnóstico por imagem , Encéfalo , Região do Caribe , Marcha
7.
Neurotherapeutics ; 20(4): 1109-1119, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097344

RESUMO

Essential tremor (ET) is a disabling condition resulting from a dysfunction of cerebello-thalamo-cortical circuitry. Deep brain stimulation (DBS) or lesion of the ventral-intermediate thalamic nucleus (VIM) is an effective treatment for severe ET. Transcranial cerebellar brain stimulation has recently emerged as a non-invasive potential therapeutic option. Here, we aim to investigate the effects of high-frequency non-invasive cerebellar transcranial alternating current stimulation (tACS) in severe ET patients already operated for VIM-DBS. Eleven ET patients with VIM-DBS, and 10 ET patients without VIM-DBS and matched for tremor severity, were included in this double-blind proof-of-concept controlled study. All patients received unilateral cerebellar sham-tACS and active-tACS for 10 min. Tremor severity was blindly assessed at baseline, without VIM-DBS, during sham-tACS, during and at 0, 20, 40 min after active-tACS, using kinetic recordings during holding posture and action ('nose-to-target') task and videorecorded Fahn-Tolosa-Marin (FTM) clinical scales. In the VIM-DBS group, active-tACS significantly improved both postural and action tremor amplitude and clinical (FTM scales) severity, relative to baseline, whereas sham-tACS did not, with a predominant effect for the ipsilateral arm. Tremor amplitude and clinical severity were also not significantly different between ON VIM-DBS and active-tACS conditions. In the non-VIM-DBS group, we also observed significant improvements in ipsilateral action tremor amplitude, and clinical severity after cerebellar active-tACS, with a trend for improved postural tremor amplitude. In non-VIM-DBS group, sham- active-tACS also decreased clinical scores. These data support the safety and potential efficacy of high-frequency cerebellar-tACS to reduce ET amplitude and severity.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Tálamo , Resultado do Tratamento , Tremor/terapia , Método Duplo-Cego
8.
Parkinsonism Relat Disord ; 104: 49-57, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36242900

RESUMO

INTRODUCTION: Subthalamic deep-brain-stimulation (STN-DBS) is an effective means to treat Parkinson's disease (PD) symptoms. Its benefit on gait disorders is variable, with freezing of gait (FOG) worsening in about 30% of cases. Here, we investigate the clinical and anatomical features that could explain post-operative FOG. METHODS: Gait and balance disorders were assessed in 19 patients, before and after STN-DBS using clinical scales and gait recordings. The location of active stimulation contacts were evaluated individually and the volumes of activated tissue (VAT) modelled for each hemisphere. We used a whole brain tractography template constructed from another PD cohort to assess the connectivity of each VAT within the 39 Brodmann cortical areas (BA) to search for correlations between postoperative PD disability and cortico-subthalamic connectivity. RESULTS: STN-DBS induced a 100% improvement to a 166% worsening in gait disorders, with a mean FOG decrease of 36%. We found two large cortical clusters for VAT connectivity: one "prefrontal", mainly connected with BA 8,9,10,11 and 32, and one "sensorimotor", mainly connected with BA 1-2-3,4 and 6. After surgery, FOG severity positively correlated with the right prefrontal VAT connectivity, and negatively with the right sensorimotor VAT connectivity. The right prefrontal VAT connectivity also tended to be positively correlated with the UPDRS-III score, and negatively with step length. The MDRS score positively correlated with the right sensorimotor VAT connectivity. CONCLUSION: Recruiting right sensorimotor and avoiding right prefrontal cortico-subthalamic fibres with STN-DBS could explain reduced post-operative FOG, since gait is a complex locomotor program that necessitates accurate cognitive control.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Marcha/fisiologia
9.
Psychol Health ; : 1-24, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35255746

RESUMO

OBJECTIVE: To examine the experience of people with Parkinson's disease when walking in different social situations, and improve understanding of how this affects participation in meaningful activity. METHODS: A convenience sample of fourteen people with Parkinson's disease and a history of gait dysfunction was recruited. In-depth interviews and direct observations were conducted in the participants' home environments. Specific examples from community mobility were reviewed using first person interviewing techniques with the support of video footage. Interview transcripts were analyzed using an interpretive phenomenological approach to derive key themes. RESULTS: The feeling of 'being looked at' (le regard des autres) was the central theme in participant discourse. This sentiment was inextricably linked to the given norms of the social setting, and the relationships between participants and others within that environment. Participants sought to manage how they were perceived by others through modification of posture/gait patterns; disclosure of their neurological disease; and avoidance/withdrawal from social situations. CONCLUSION: Further to the functional aspects of mobility, gait is important for maintaining self-image in people with Parkinson's disease. Affective gaze interactions have significant consequences upon participation restriction. These findings underscore the interest of activities which strengthen self-image and validate movement diversity in PD rehabilitation.

10.
Parkinsonism Relat Disord ; 96: 13-17, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121249

RESUMO

INTRODUCTION: Deep brain stimulation (DBS) of the mesencephalic locomotor region, composed of the pedunculopontine (PPN) and cuneiform (CuN) nuclei, has been proposed to treat dopa-resistant gait and balance disorders in Parkinson's disease (PD). Here, we report the long-term effects of PPN- or CuN-DBS on these axial disorders. METHODS: In 6 PD patients operated for mesencephalic locomotor region DBS and prospectively followed for more than 2 years, we assessed the effects of both PPN- and CuN-DBS (On-dopa) in a cross-over single-blind study by using clinical scales and recording gait parameters. Patients were also examined Off-DBS. RESULTS: More than 2 years after surgery, axial and Tinetti scores were significantly aggravated with both PPN- or CuN-DBS relative to before and one year after surgery. Gait recordings revealed an increased double-stance duration with both PPN- or CuN-DBS, higher swing phase duration with CuN-DBS and step width with PPN-DBS. With PPN- versus CuN-DBS, the step length, velocity and cadence were significantly higher; and the double-stance and turn durations significantly lower. Irrespective the target, we found no significant change in clinical scores Off-DBS compared to On-DBS. The duration of anticipatory postural adjustments as well as step length were lower with versus without PPN-DBS. We found no other significant changes in motor, cognitive or psychiatric scores, except an increased anxiety severity. CONCLUSION: In this long-term follow-up study with controlled assessments, PPN- or CuN-DBS did not improve dopa-resistant gait and balance disorders with a worsening of these axial motor signs with time, thus indicating no significant clinical effect.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Di-Hidroxifenilalanina , Seguimentos , Marcha , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiologia , Método Simples-Cego
11.
Ann Neurol ; 91(3): 424-435, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34984729

RESUMO

OBJECTIVE: This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS: Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS: Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION: Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.


Assuntos
Cognição/fisiologia , Estimulação Encefálica Profunda/métodos , Glucosilceramidase/genética , Heterozigoto , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Idoso , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Testes Neuropsicológicos , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia
12.
Eur J Neurol ; 29(5): 1293-1302, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35098613

RESUMO

BACKGROUND AND PURPOSE: Repetitive transcranial magnetic stimulation (rTMS) has been proposed to treat functional neurological disorders. Here, the aim was to assess the efficacy of rTMS to treat functional paralysis in a controlled randomized trial. METHODS: Patients received two sessions of active or sham 0.25 Hz rTMS (60 stimuli each), with a 1-day interval, applied over the motor cortex contralateral to the paralysis. The primary outcome was the number of patients with an increase in motor score between baseline and after the second rTMS session, rated by two investigators blinded to the treatment allocation. Secondary outcomes were changes in global and fine motor scores between groups after rTMS, and the occurrence of adverse events. RESULTS: Sixty-two patients (46 female; mean [SD] age, 35.2 [13.9] years) were enrolled and randomized. Thirteen out of 32 (41%) and 11/30 (37%) patients had increased motor strength after active or sham rTMS, respectively (p = 0.80). Changes in both global and fine motor scores after rTMS relative to baseline were also not significantly different between treatment groups (median difference in the global motor score 0.62 [0.83] and 0.37 [0.61], and in the fine motor scores 0.12 [0.18] and 0.08 [0.11], in active and sham rTMS groups, respectively; p = 0.14). Six serious adverse events, consisting of three cephalalgia in the active group and two cephalalgia and one asthenia in the sham group, were observed. CONCLUSIONS: Two sessions of sham or active low frequency rTMS were effective to improve functional paralysis, suggesting a placebo effect of this non-invasive brain stimulation technique.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Adulto , Método Duplo-Cego , Feminino , Cefaleia/etiologia , Humanos , Paralisia/etiologia , Paralisia/terapia , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
13.
J Parkinsons Dis ; 12(2): 639-653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34744048

RESUMO

BACKGROUND: Dopa-resistant freezing of gait (FOG) and falls represent the dominant motor disabilities in advanced Parkinson's disease (PD). OBJECTIVE: We investigate the effects of deep brain stimulation (DBS) of the mesencephalic locomotor region (MLR), comprised of the pedunculopontine (PPN) and cuneiform (CuN) nuclei, for treating gait and balance disorders, in a randomized double-blind cross-over trial. METHODS: Six PD patients with dopa-resistant FOG and/or falls were operated for MLR-DBS. Patients received three DBS conditions, PPN, CuN, or Sham, in a randomized order for 2-months each, followed by an open-label phase. The primary outcome was the change in anteroposterior anticipatory-postural-adjustments (APAs) during gait initiation on a force platformResults:The anteroposterior APAs were not significantly different between the DBS conditions (median displacement [1st-3rd quartile] of 3.07 [3.12-4.62] cm with sham-DBS, 1.95 [2.29-3.85] cm with PPN-DBS and 2.78 [1.66-4.04] cm with CuN-DBS; p = 0.25). Step length and velocity were significantly higher with CuN-DBS vs. both sham-DBS and PPN-DBS. Conversely, step length and velocity were lower with PPN-DBS vs. sham-DBS, with greater double stance and gait initiation durations. One year after surgery, step length was significantly lower with PPN-DBS vs. inclusion. We did not find any significant change in clinical scales between DBS conditions or one year after surgery. CONCLUSION: Two months of PPN-DBS or CuN-DBS does not effectively improve clinically dopa-resistant gait and balance disorders in PD patients.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Estimulação Encefálica Profunda/métodos , Di-Hidroxifenilalanina , Marcha , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiologia
15.
Curr Biol ; 31(5): 943-954.e5, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33352119

RESUMO

A critical mechanism for maximizing reward is instrumental learning. In standard instrumental learning models, action values are updated on the basis of reward prediction errors (RPEs), defined as the discrepancy between expectations and outcomes. A wealth of evidence across species and experimental techniques has established that RPEs are signaled by midbrain dopamine neurons. However, the way dopamine neurons receive information about reward outcomes remains poorly understood. Recent animal studies suggest that the pedunculopontine nucleus (PPN), a small brainstem structure considered as a locomotor center, is sensitive to reward and sends excitatory projection to dopaminergic nuclei. Here, we examined the hypothesis that the PPN could contribute to reward learning in humans. To this aim, we leveraged a clinical protocol that assessed the therapeutic impact of PPN deep-brain stimulation (DBS) in three patients with Parkinson disease. PPN local field potentials (LFPs), recorded while patients performed an instrumental learning task, showed a specific response to reward outcomes in a low-frequency (alpha-beta) band. Moreover, PPN DBS selectively improved learning from rewards but not from punishments, a pattern that is typically observed following dopaminergic treatment. Computational analyses indicated that the effect of PPN DBS on instrumental learning was best captured by an increase in subjective reward sensitivity. Taken together, these results support a causal role for PPN-mediated reward signals in human instrumental learning.


Assuntos
Condicionamento Operante/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Idoso , Estimulação Encefálica Profunda , Dopamina/metabolismo , Dopamina/farmacologia , Dopamina/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Recompensa
17.
Artigo em Inglês | MEDLINE | ID: mdl-33060034

RESUMO

BACKGROUND: Subthalamic nucleus (STN) deep brain stimulation alleviates obsessive-compulsive disorder (OCD) symptoms, suggesting that this basal ganglia structure may play a key role in integrating limbic and motor information. We explored the modulation of STN neural activity by visual emotional information under different motor demands. METHODS: We compared STN local field potentials acquired in 7 patients with OCD and 15 patients with Parkinson's disease off and on levodopa while patients categorized pictures as unpleasant, pleasant, or neutral and pressed a button for 1 of these 3 categories depending on the instruction. RESULTS: During image presentation, theta power increased for unpleasant compared with neutral images in both patients with OCD and patients with Parkinson's disease. Only in patients with OCD was theta power also increased in pleasant compared with neutral trials. During the button press in patients with OCD, no modification of STN activity was seen on average, but theta power increased when the image triggering the motor response was unpleasant. Conversely, in patients with Parkinson's disease, a beta decrease was observed during the button press unrelated to the valence of the stimulus. Finally, in patients with OCD, a significant positive relationship was observed between the amplitude of the emotionally related theta response and symptom severity (measured using the Yale-Brown Obsessive Compulsive Scale). CONCLUSIONS: We highlighted modulations of STN theta band activity related to emotions that were specific to OCD and correlated with OCD symptom severity. STN theta-induced activity might therefore underlie dysfunction of the limbic STN and its related network leading to OCD pathophysiology.


Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Doença de Parkinson , Núcleo Subtalâmico , Emoções , Humanos , Transtorno Obsessivo-Compulsivo/terapia , Doença de Parkinson/terapia
18.
Neurology ; 96(5): e684-e697, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199437

RESUMO

OBJECTIVES: Nucleus basalis of Meynert deep brain stimulation (NBM-DBS) has been proposed for patients with dementia. Here, we aim to assess the safety and effects of NBM-DBS in patients with Lewy body dementia (LBD), in a randomized, double-blind, crossover clinical trial. METHODS: Six patients with mild to moderate LBD (mean [SD] age, 62.2 [7.8] years) were included, operated on for bilateral NBM-DBS, and assigned to receive either active or sham NBM-DBS followed by the opposite condition for 3 months. The primary outcome was the difference in the total free recalls of the Free and Cued Selective Reminding Test (FCSRT) between active and sham NBM-DBS. Secondary outcomes were assessments of the safety and effects of NBM-DBS on cognition, motor disability, sleep, and PET imaging. RESULTS: There was no significant difference in the FCSRT score with active vs sham NBM-DBS. The surgical procedures were well tolerated in all patients, but we observed significant decreases in Stroop and Benton scores after electrode implantation. We observed no significant difference in other scales between active and sham NBM-DBS. With active NBM-DBS relative to baseline, phonemic fluency and motor disability significantly decreased. Lastly, the superior lingual gyrus metabolic activity significantly increased with active NBM-DBS. CONCLUSIONS: NBM-DBS does not appear to be totally safe for patients with LBD with no evidence of cognitive benefit. CLINICALTRIALSGOV IDENTIFIER: NCT01340001. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, for patients with LBD operated on for bilateral NBM-DBS, active NBM-DBS stimulation compared to sham stimulation did not significantly change selective recall scores.


Assuntos
Núcleo Basal de Meynert , Estimulação Encefálica Profunda/métodos , Doença por Corpos de Lewy/terapia , Rememoração Mental , Idoso , Encéfalo/diagnóstico por imagem , Estudos Cross-Over , Método Duplo-Cego , Fluordesoxiglucose F18 , Humanos , Neuroestimuladores Implantáveis , Doença por Corpos de Lewy/fisiopatologia , Doença por Corpos de Lewy/psicologia , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Complicações Pós-Operatórias , Implantação de Prótese , Compostos Radiofarmacêuticos , Sono , Resultado do Tratamento
19.
Parkinsonism Relat Disord ; 76: 56-62, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32866938

RESUMO

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) has demonstrated its efficacy on motor complications in advanced Parkinson's disease (PD) but does not modify disease progression. Genetic forms of PD have been associated with different cognitive progression profiles. OBJECTIVE: To assess the effect of PD-related genetic mutations on cognitive outcome after STN-DBS. METHODS: Patients with STN-DBS were screened for LRRK2, GBA, and PRKN mutations at the Pitié-Salpêtrière Hospital between 1997 and 2009. Patients with known monogenetic forms of PD from six other centers were also included. The Mattis Dementia Rating Scale (MDRS) was used to evaluate cognition at baseline and one-year post-surgery. The standardized Unified PD Rating Scale (UPDRS) evaluation On and Off medication/DBS was also administered. A generalized linear model adjusted for sex, ethnicity, age at onset, and disease duration was used to evaluate the effect of genetic factors on MDRS changes. RESULTS: We analyzed 208 patients (131 males, 77 females, 54.3 ± 8.8 years) including 25 GBA, 18 LRRK2, 22 PRKN, and 143 PD patients without mutations. PRKN patients were younger and had a longer disease duration at baseline. A GBA mutation was the only significant genetic factor associated with MDRS change (ß = -2.51, p = 0.009). GBA mutation carriers had a more pronounced post-operative MDRS decline (3.2 ± 5.1) than patients with LRRK2 (0.9 ± 4.8), PRKN (0.5 ± 2.7) or controls (1.4 ± 4.4). The motor response to DBS was similar between groups. CONCLUSION: GBA mutations are associated with early cognitive decline following STN-DBS. Neuropsychological assessment and discussions on the benefit/risk ratio of DBS are particularly important for this population.


Assuntos
Disfunção Cognitiva , Estimulação Encefálica Profunda , Progressão da Doença , Glucosilceramidase/genética , Doença de Parkinson , Núcleo Subtalâmico , Idoso , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/terapia , Estudos Retrospectivos , Núcleo Subtalâmico/cirurgia , Ubiquitina-Proteína Ligases/genética
20.
Brain ; 143(8): 2607-2623, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32653920

RESUMO

Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate 'reverse' tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Rede Nervosa/fisiopatologia , Síndrome de Tourette/terapia , Adulto , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Estudos Retrospectivos , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/fisiopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...