Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 102(3): 2207-2216, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30638997

RESUMO

Nitrates have been fed to ruminants, including dairy cows, as an electron sink to mitigate CH4 emissions. In the NO3- reduction process, NO2- can accumulate, which could directly inhibit methanogens and some bacteria. However, little information is available on eukaryotic microbes in the rumen. Protozoa were hypothesized to enhance nitrate reductase but also have more circling swimming behavior, and the yeast Saccharomyces cerevisiae was hypothesized to lessen NO2- accumulation. In the first experiment, a culture of S. cerevisiae strain 1026 was evaluated under 3 growth phases: aerobic, anoxic, or transition to anoxic culture. Each phase was evaluated with a control or 1 of 3 isonitrogenous doses, including NO3-, NO2-, or NH4+ replacing peptone in the medium. Gas head phase, NO3-, or NH4+ did not influence culture growth, but increasing NO2- concentration increasingly inhibited yeast growth. In experiment 2, rumen fluid was harvested and incubated for 3 h in 2 concentrations of NO3-, NO2-, or sodium nitroprusside before assessing chemotaxis of protozoa toward glucose or peptides. Increasing NO2- concentration decreased chemotaxis by isotrichids toward glucose or peptides and decreased chemotaxis by entodiniomorphids but only toward peptides. Live yeast culture was inhibited dose-responsively by NO2- and does not seem to be a viable mechanism to prevent NO2- accumulation in the rumen, whereas a role for protozoal nitrate reductase and NO2- influencing signal transduction requires further research.


Assuntos
Ração Animal , Bovinos , Dieta/veterinária , Nitratos/farmacologia , Rúmen/microbiologia , Animais , Quimiotaxia/efeitos dos fármacos , Cilióforos/metabolismo , Suplementos Nutricionais , Feminino , Glucose/metabolismo , Nitritos/farmacologia , Rúmen/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
2.
J Dairy Sci ; 102(3): 2217-2231, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30639000

RESUMO

Nitrates have been fed to ruminants, including dairy cows, as an electron sink to mitigate CH4 emissions. In the NO3- reduction process, NO2- can accumulate, which could directly inhibit methanogens and possibly other microbes in the rumen. Saccharomyces cerevisiae yeast was hypothesized to decrease NO2- through direct reduction or indirectly by stimulating the bacterium Selenomonas ruminantium, which is among the ruminal bacteria most well characterized to reduce both NO3- and NO2-. Ruminal fluid was incubated in continuous cultures fed diets without or with NaNO3 (1.5% of diet dry matter; i.e., 1.09% NO3-) and without or with live yeast culture (LYC) fed at a recommended 0.010 g/d (scaled from cattle to fermentor intakes) in a 2 × 2 factorial arrangement of treatments. Treatments with LYC had increased NDF digestibility and acetate:propionate by increasing acetate molar proportion but tended to decrease total VFA production. The main effect of NO3- increased acetate:propionate by increasing acetate molar proportion; NO3- also decreased molar proportions of isobutyrate and butyrate. Both NO3- and LYC shifted bacterial community composition (based on relative sequence abundance of 16S rRNA genes). An interaction occurred such that NO3- decreased valerate molar proportion only when no LYC was added. Nitrate decreased daily CH4 emissions by 29%. However, treatment × time interactions were present for both CH4 and H2 emission from the headspace; CH4 was decreased by the main effect of NO3- until 6 h postfeeding, but NO3- and LYC decreased H2 emission up to 4 h postfeeding. As expected, NO3- decreased methane emissions in continuous cultures; however, contrary to expectations, LYC did not attenuate NO2- accumulation.


Assuntos
Ração Animal , Bovinos/metabolismo , Dieta/veterinária , Metano/biossíntese , Nitratos/farmacologia , Rúmen/microbiologia , Saccharomyces cerevisiae/metabolismo , Animais , Bovinos/microbiologia , Suplementos Nutricionais , Feminino , Fermentação , Nitratos/administração & dosagem , RNA Ribossômico 16S/metabolismo , Rúmen/metabolismo , Ruminação Digestiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...