Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Markers ; 2022: 9619357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126793

RESUMO

BACKGROUND: Lung cancer is one of the most commonly diagnosed cancer worldwide. As one of the liquid biopsy analytes, alternations in cell-free DNA (cfDNA) methylation could function as promising biomarkers for lung cancer detection. METHODS: In this study, differential methylation analysis was performed to identify candidate markers, and lasso regression with 10-fold cross-validation (CV) was used to establish the diagnostic marker panel. The performance of the binary classifier was evaluated using the receiver operating characteristic (ROC) curve and the precision-recall (PR) curve. RESULTS: We identified 4072 differentially methylated regions (DMRs) based on cfDNA methylation data, and then a 10-DMR marker panel was established. The panel achieved an area under the ROC curve (AUROC) of 0.922 and an area under the PR curve (AUPR) of 0.899 in a cfDNA cohort containing 29 lung cancer and 74 normal samples, showing outstanding performance. Besides, the cfDNA-derived markers also performed well in primary tissue datasets, which were more robust than the tissue-derived markers. CONCLUSION: Our study suggested that the 10-DMR marker panel attained high accuracy and robustness and may function as a novel and promising target for lung cancer detection.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres/metabolismo , Metilação de DNA , Neoplasias Pulmonares/diagnóstico , Humanos , Valor Preditivo dos Testes
2.
Biosens Bioelectron ; 204: 114052, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149454

RESUMO

Magnetic levitation (MagLev) provides a simple but promising method for density-based analysis and detection down to the individual cell level. However, each existing MagLev configuration for the single-cell density measurement, mainly consisting of a capillary (∼50 mm) placed between two magnets, yields a fairly low sample utilization because of no knowledge about the sample cells in the regions other than the limited microscope vision. Moreover, the quantitative analysis may be affected due to the unclearly defined measurement area, which is specifically associated with the uneven magnetization of magnets, cell size, degree of aggregation. In this work, we explore a pump-free microfluidic magnetic levitation approach for density-based cell characterization, enabling sensitive and effective cellular density measurement on small sample volumes. The microfluidic MagLev comprises a pump-free microfluidic chip placed between two ring magnets with like poles facing. With no external pumps, connectors or control facility, much smaller amounts of fluids (∼4 µL) could be driven automatically in the entire microchannel in 16 s. Based on the pump-free mechanism, unique density signatures of cells from different lineages (ARPE-19, HCT116, HeLa, HT1080, Huh7) are characterized by monitoring the levitation profiles. Furthermore, variation in density of A549 lung cancer cells subjected to a drug treatment are observed in our platform, allowing evaluation of the efficacy of the drug treatment at the individual cell level. Thereby, the proposed pump-free microfluidic MagLev platform, a low-cost, fully automatic and portable design for label-free density-based cell characterization, provides a universal detection tool that operates efficiently within small-volume environments.


Assuntos
Técnicas Biossensoriais , Microfluídica , Fenômenos Magnéticos , Magnetismo , Imãs
3.
Viruses ; 11(2)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791465

RESUMO

Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity. Here, we developed a comparative approach integrating genetics, molecular selection analysis, and structural biology to identify the codon usage and adaptive evolution of ICV. We show that ICV can be classified into six lineages, consistent with previous studies. The HE gene has a low codon usage bias, which may facilitate ICV replication by reducing competition during evolution. Natural selection, dinucleotide composition, and mutation pressure shape the codon usage patterns of the ICV HE gene, with natural selection being the most important factor. Codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of ICV was to humans, followed by cattle and swine. Additionally, similarity index (SiD) analysis revealed that swine exerted a stronger evolutionary pressure on ICV than humans, which is considered the primary reservoir. Furthermore, a similar tendency was also observed in the M gene. Of note, we found HE residues 176, 194, and 198 to be under positive selection, which may be the result of escape from antibody responses. Our study provides useful information on the genetic evolution of ICV from a new perspective that can help devise prevention and control strategies.


Assuntos
Códon , Evolução Molecular , Gammainfluenzavirus/genética , Hemaglutininas Virais/genética , Proteínas Virais de Fusão/genética , Animais , Bovinos , Genoma Viral , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Gammainfluenzavirus/enzimologia , Filogenia , Seleção Genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...