Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 436: 129171, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605504

RESUMO

Graphitic carbon nitride (g-C3N4) is a promising candidate for photocatalysis, but exhibits moderate activity due to strongly bound excitons and sluggish charge migration. The dissociation of excitons to free electrons and holes is considered an effective strategy to enhance photocatalytic activity. Herein, a novel boron nitride quantum dots (BNQDs) modified P-doped g-C3N4 photocatalyst (BQPN) was successfully prepared by thermal polymerization method. Photoluminescence techniques and photoelectrochemical tests demonstrated that the introduction of P atoms and BNQDs promoted the dissociation of excitons and the migration of photogenerated carriers. Specifically, theoretical calculations revealed that P substitutions were the sites of pooled electrons, while BNQDs were the excellent photogenerated hole extractors. Accordingly, compared with g-C3N4, the BQPN showed improved performance in degrading four non-steroidal anti-inflammatory drugs (NSAIDs) under visible light irradiation. This work not only establishes an in-depth understanding of excitonic regulation in g-C3N4, but also offers a promising photocatalytic technology for environmental remediation.


Assuntos
Recuperação e Remediação Ambiental , Grafite , Catálise , Compostos de Nitrogênio
2.
J Hazard Mater ; 422: 126868, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34418826

RESUMO

Herein, supporting g-C3N4 embedded with benzene-ring (BCN) on P-modified g-C3N4 (PCN) successfully synthesized the homogeneous photocatalyst BCN/PCN (PBCN) via a simple thermal polymerization reaction. Under blue-light (LED) irradiation, the optimized PBCN (0.448 min-1) demonstrated excellent photocatalytic performance, attaining over 74 times the degradation rate for sulfisoxazole (SSZ) in contrast to non-functionalized g-C3N4 (CN, 0.006 min-1). Theoretical calculations revealed that the substitution of heterocyclic rings in the g-C3N4 triazine networks with benzene-rings enabled them to serve as electron donors, while promoting photoinduced spatial charge dissociation. Further, the carrier PCN tended to serve as electron acceptors to form electron-rich corner-phosphorous sites. Reactive species experiments demonstrate that the O2˙- and h+ constituted the primary photocatalytic mechanism of SSZ degradation. The potential SSZ degradation routes were predicted based on the transformation products via mass spectrometry. Finally, the composite materials also exhibited excellent photocatalytic activity in the conversion of solar energy to chemical energy (H2O2). This study guides the rational modification of g-C3N4-based semiconductors to achieve green energy production and beneficial ecological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...