Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 16(6): 1228-1253, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789599

RESUMO

In the injured brain, new neurons produced from endogenous neural stem cells form chains and migrate to injured areas and contribute to the regeneration of lost neurons. However, this endogenous regenerative capacity of the brain has not yet been leveraged for the treatment of brain injury. Here, we show that in healthy brain chains of migrating new neurons maintain unexpectedly large non-adherent areas between neighboring cells, allowing for efficient migration. In instances of brain injury, neuraminidase reduces polysialic acid levels, which negatively regulates adhesion, leading to increased cell-cell adhesion and reduced migration efficiency. The administration of zanamivir, a neuraminidase inhibitor used for influenza treatment, promotes neuronal migration toward damaged regions, fosters neuronal regeneration, and facilitates functional recovery. Together, these findings shed light on a new mechanism governing efficient neuronal migration in the adult brain under physiological conditions, pinpoint the disruption of this mechanism during brain injury, and propose a promising therapeutic avenue for brain injury through drug repositioning.


Assuntos
Encéfalo , Movimento Celular , Neuraminidase , Neurônios , Neuraminidase/metabolismo , Neuraminidase/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Zanamivir/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Siálicos/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Adesão Celular/efeitos dos fármacos , Humanos , Masculino
2.
bioRxiv ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746302

RESUMO

We develop a data harmonization approach for C. elegans volumetric microscopy data, still or video, consisting of a standardized format, data pre-processing techniques, and a set of human-in-the-loop machine learning based analysis software tools. We unify a diverse collection of 118 whole-brain neural activity imaging datasets from 5 labs, storing these and accompanying tools in an online repository called WormID (wormid.org). We use this repository to train three existing automated cell identification algorithms to, for the first time, enable accuracy in neural identification that generalizes across labs, approaching human performance in some cases. We mine this repository to identify factors that influence the developmental positioning of neurons. To facilitate communal use of this repository, we created open-source software, code, web-based tools, and tutorials to explore and curate datasets for contribution to the scientific community. This repository provides a growing resource for experimentalists, theorists, and toolmakers to (a) study neuroanatomical organization and neural activity across diverse experimental paradigms, (b) develop and benchmark algorithms for automated neuron detection, segmentation, cell identification, tracking, and activity extraction, and (c) inform models of neurobiological development and function.

3.
Methods Mol Biol ; 2800: 203-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709486

RESUMO

Cell tracking is an essential step in extracting cellular signals from moving cells, which is vital for understanding the mechanisms underlying various biological functions and processes, particularly in organs such as the brain and heart. However, cells in living organisms often exhibit extensive and complex movements caused by organ deformation and whole-body motion. These movements pose a challenge in obtaining high-quality time-lapse cell images and tracking the intricate cell movements in the captured images. Recent advances in deep learning techniques provide powerful tools for detecting cells in low-quality images with densely packed cell populations, as well as estimating cell positions for cells undergoing large nonrigid movements. This chapter introduces the challenges of cell tracking in deforming organs and moving animals, outlines the solutions to these challenges, and presents a detailed protocol for data preparation, as well as for performing cell segmentation and tracking using the latest version of 3DeeCellTracker. This protocol is expected to enable researchers to gain deeper insights into organ dynamics and biological processes.


Assuntos
Rastreamento de Células , Aprendizado Profundo , Animais , Rastreamento de Células/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento Celular , Encéfalo/citologia , Imagem com Lapso de Tempo/métodos
4.
Sci Rep ; 13(1): 7109, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217545

RESUMO

Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of high-precision 3D cell image stacks. To examine cell morphology and connectivity in organs such as the brain, scientists need to conduct cell segmentation, which extracts individual cell regions of different shapes and sizes from a 3D image. This is challenging due to the indistinct images often encountered in real biomedical research: in many cases, automatic segmentation methods inevitably contain numerous mistakes in the segmentation results, even when using advanced deep learning methods. To analyze 3D cell images effectively, a semi-automated software solution is needed that combines powerful deep learning techniques with the ability to perform post-processing, generate accurate segmentations, and incorporate manual corrections. To address this gap, we developed Seg2Link, which takes deep learning predictions as inputs and use watershed 2D + cross-slice linking to generate more accurate automatic segmentations than previous methods. Additionally, it provides various manual correction tools essential for correcting mistakes in 3D segmentation results. Moreover, our software has been optimized for efficiently processing large 3D images in diverse organisms. Thus, Seg2Link offers an practical solution for scientists to study cell morphology and connectivity in 3D image stacks.


Assuntos
Imageamento Tridimensional , Software , Imageamento Tridimensional/métodos , Microscopia Eletrônica , Processamento de Imagem Assistida por Computador/métodos
5.
Bio Protoc ; 12(4): e4319, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35340289

RESUMO

Recent advancements in 3D microscopy have enabled scientists to monitor signals of multiple cells in various animals/organs. However, segmenting and tracking the moving cells in three-dimensional time-lapse images (3D + T images), to extract their dynamic positions and activities, remains a considerable bottleneck in the field. We developed a deep learning-based software pipeline called 3DeeCellTracker, which precisely tracks cells with large movements in 3D + T images, obtained from different animals or organs, using highly divergent optical systems. In this protocol, we explain how to set up the computational environment, the required data, and the procedures to segment and track cells with 3DeeCellTracker. Our protocol will help scientists to analyze cell activities/movements in 3D + T image datasets that have been difficult to analyze. Graphic abstract: The flowchart illustrating how to use 3DeeCellTracker. See the Equipment and Procedure sections for detailed explanations.

6.
Elife ; 102021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781383

RESUMO

Despite recent improvements in microscope technologies, segmenting and tracking cells in three-dimensional time-lapse images (3D + T images) to extract their dynamic positions and activities remains a considerable bottleneck in the field. We developed a deep learning-based software pipeline, 3DeeCellTracker, by integrating multiple existing and new techniques including deep learning for tracking. With only one volume of training data, one initial correction, and a few parameter changes, 3DeeCellTracker successfully segmented and tracked ~100 cells in both semi-immobilized and 'straightened' freely moving worm's brain, in a naturally beating zebrafish heart, and ~1000 cells in a 3D cultured tumor spheroid. While these datasets were imaged with highly divergent optical systems, our method tracked 90-100% of the cells in most cases, which is comparable or superior to previous results. These results suggest that 3DeeCellTracker could pave the way for revealing dynamic cell activities in image datasets that have been difficult to analyze.


Microscopes have been used to decrypt the tiny details of life since the 17th century. Now, the advent of 3D microscopy allows scientists to build up detailed pictures of living cells and tissues. In that effort, automation is becoming increasingly important so that scientists can analyze the resulting images and understand how bodies grow, heal and respond to changes such as drug therapies. In particular, algorithms can help to spot cells in the picture (called cell segmentation), and then to follow these cells over time across multiple images (known as cell tracking). However, performing these analyses on 3D images over a given period has been quite challenging. In addition, the algorithms that have already been created are often not user-friendly, and they can only be applied to a specific dataset gathered through a particular scientific method. As a response, Wen et al. developed a new program called 3DeeCellTracker, which runs on a desktop computer and uses a type of artificial intelligence known as deep learning to produce consistent results. Crucially, 3DeeCellTracker can be used to analyze various types of images taken using different types of cutting-edge microscope systems. And indeed, the algorithm was then harnessed to track the activity of nerve cells in moving microscopic worms, of beating heart cells in a young small fish, and of cancer cells grown in the lab. This versatile tool can now be used across biology, medical research and drug development to help monitor cell activities.


Assuntos
Rastreamento de Células/métodos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem com Lapso de Tempo/métodos , Animais , Encéfalo/diagnóstico por imagem , Caenorhabditis elegans/citologia , Rastreamento de Células/instrumentação , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional/instrumentação , Esferoides Celulares , Imagem com Lapso de Tempo/instrumentação , Células Tumorais Cultivadas , Peixe-Zebra
7.
Nat Methods ; 16(10): 1054-1062, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31562489

RESUMO

The limited per-pixel bandwidth of most microscopy methods requires compromises between field of view, sampling density and imaging speed. This limitation constrains studies involving complex motion or fast cellular signaling, and presents a major bottleneck for high-throughput structural imaging. Here, we combine high-speed intensified camera technology with a versatile, reconfigurable and dramatically improved Swept, Confocally Aligned Planar Excitation (SCAPE) microscope design that can achieve high-resolution volumetric imaging at over 300 volumes per second and over 1.2 GHz pixel rates. We demonstrate near-isotropic sampling in freely moving Caenorhabditis elegans, and analyze real-time blood flow and calcium dynamics in the beating zebrafish heart. The same system also permits high-throughput structural imaging of mounted, intact, cleared and expanded samples. SCAPE 2.0's significantly lower photodamage compared to point-scanning techniques is also confirmed. Our results demonstrate that SCAPE 2.0 is a powerful, yet accessible imaging platform for myriad emerging high-speed dynamic and high-throughput volumetric microscopy applications.


Assuntos
Microscopia/métodos , Animais , Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Coração/embriologia , Coração/fisiologia , Fótons , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia
8.
Front Neurosci ; 10: 476, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877100

RESUMO

To ensure survival, animals must update the internal representations of their environment in a trial-and-error fashion. Psychological studies of associative learning and neurophysiological analyses of dopaminergic neurons have suggested that this updating process involves the temporal-difference (TD) method in the basal ganglia network. However, the way in which the component variables of the TD method are implemented at the neuronal level is unclear. To investigate the underlying neural mechanisms, we trained domestic chicks to associate color cues with food rewards. We recorded neuronal activities from the medial striatum or tegmentum in a freely behaving condition and examined how reward omission changed neuronal firing. To compare neuronal activities with the signals assumed in the TD method, we simulated the behavioral task in the form of a finite sequence composed of discrete steps of time. The three signals assumed in the simulated task were the prediction signal, the target signal for updating, and the TD-error signal. In both the medial striatum and tegmentum, the majority of recorded neurons were categorized into three types according to their fitness for three models, though these neurons tended to form a continuum spectrum without distinct differences in the firing rate. Specifically, two types of striatal neurons successfully mimicked the target signal and the prediction signal. A linear summation of these two types of striatum neurons was a good fit for the activity of one type of tegmental neurons mimicking the TD-error signal. The present study thus demonstrates that the striatum and tegmentum can convey the signals critically required for the TD method. Based on the theoretical and neurophysiological studies, together with tract-tracing data, we propose a novel model to explain how the convergence of signals represented in the striatum could lead to the computation of TD error in tegmental dopaminergic neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...