Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38889747

RESUMO

BACKGROUND: Ferroptosis is emerging as a critical pathway in ischemia/reperfusion (I/R) injury, contributing to compromised cardiac function and predisposing individuals to sepsis and myocardial failure. The study investigates the underlying mechanism of dexmedetomidine (DEX) in hypoxia/reoxygenation (H/R)-induced ferroptosis in cardiomyocytes, aiming to identify novel targets for myocardial I/R injury treatment. METHODS: H9C2 cells were subjected to H/R and treated with varying concentrations of DEX. Additionally, H9C2 cells were transfected with miR-141-3p inhibitor followed by H/R treatment. Levels of miR-141-3p, long noncoding RNA (lncRNA) taurine upregulated 1 (TUG1), Fe2+, glutathione (GSH), and malondialdehyde were assessed. Reactive oxygen species (ROS) generation was measured via fluorescent labeling. Expression of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) was determined using Western blot. The interaction between miR-141-3p and lncRNA TUG1 was evaluated through RNA pull-down assay and dual-luciferase reporter gene assays. The stability of lncRNA TUG1 was assessed using actinomycin D. RESULTS: DEX ameliorated H/R-induced cardiomyocyte injury and elevated miR-141-3p expression in cardiomyocytes. DEX treatment increased cell viability, Fe2+, and ROS levels while decreasing ACSL4 protein expression. Furthermore, DEX upregulated GSH and GPX4 protein levels. miR-141-3p targeted lncRNA TUG1, reducing its stability and overall expression. Inhibition of miR-141-3p or overexpression of lncRNA TUG1 partially reversed the inhibitory effect of DEX on H/R-induced ferroptosis in cardiomyocytes. CONCLUSION: DEX mitigated H/R-induced ferroptosis in cardiomyocytes by upregulating miR-141-3p expression and downregulating lncRNA TUG1 expression, unveiling a potential therapeutic strategy for myocardial I/R injury.

2.
Neurol Res ; 43(7): 528-534, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33541257

RESUMO

Background: Erythropoietin-producing hepatocellular (Ephs) receptor and their ligands, ephrins, orchestrate the induction of cell proliferation and migration, axonal guidance, synaptic genesis and synaptic plasticity in the central nervous system. Previous studies demonstrated that EphBs/ephrinBs participate in the pathophysiology of neuropathic pain, inflammatory pain and bone cancer pain, but the role of EphA4 in the regulation of pain in the spinal cord is unknown. Therefore, we explored the role of EphA4 receptor in regulating chronic inflammatory pain.Methods: We established a mouse model of chronic inflammatory pain through plantar injection of complete freund's adjuvant (CFA) and assessed EphA4 expression in spinal cord by western blotting. EphA4 receptor was blocked by intrathecal injection of EphA4-Fc, an EphA4 antagonist, and pain behaviors were measured by assessing thermal hyperalgesia and mechanical allodynia. Finally, immunohistochemistry was performed to analyze the changes in the expression of Fos protein in spinal cord after blocking EphA4 receptor.Results: Plantar injection of CFA produced persistent thermal hyperalgesia and mechanical allodynia, which was accompanied by significant increases in spinal EphA4 and Fos expression. Blocking spinal EphA4 receptor suppressed CFA-induced pain behaviors and reduced the expression of Fos protein in spinal cord.Conclusions: Our study demonstrated that EphA4 receptor is involved in the generation and maintenance of CFA-induced chronic inflammatory pain and that blocking the spinal EphA4 receptor could relieve persistent pain behaviors in mice.


Assuntos
Dor Crônica/tratamento farmacológico , Neuralgia/tratamento farmacológico , Receptor EphA4/antagonistas & inibidores , Medula Espinal/efeitos dos fármacos , Animais , Dor Crônica/metabolismo , Modelos Animais de Doenças , Adjuvante de Freund/farmacologia , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Medição da Dor , Medula Espinal/metabolismo
3.
Int J Cardiol ; 168(4): 3671-8, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23856444

RESUMO

BACKGROUND: Recent studies have demonstrated that volatile anesthetic preconditioning confers myocardial protection against ischemia-reperfusion (IR) injury through activation of the reperfusion injury salvage kinase (RISK) pathway. As RISK has been shown to be impaired in hypercholesterolemia, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats. METHODS: Normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Animals received 2.4% sevoflurane during three 5 min periods with and without PI3K antagonist wortmannin (10 µg/kg, Wort) or the ERK inhibitor PD 98059 (1 mg/kg, PD). The infarct size, apoptosis, p-Akt, p-ERK1/2, p-GSK3ß were determined. RESULTS: Two hundred and six rats were analyzed in the study. In the healthy rats, sevoflurane significantly reduced infarct size by 42%, a phenomenon completely reversed by wortmannin and PD98059 and increased the phosphorylation of Akt, ERK1/2 and their downstream target of GSK3ß. In the hypercholesterolemic rats, sevoflurane failed to reduce infarct size and increase the phosphorylated Akt, ERK1/2 and GSK3ß. In contrast, GSK inhibitor SB216763 conferred cardioprotection against IR injury in healthy and hypercholesterolemic hearts. CONCLUSIONS: Hyperchoesterolemia abrogated sevoflurane-induced cardioprotection against IR injury by alteration of upstream signaling of GSK3ß and acute GSK inhibition may provide a novel therapeutic strategy to protect hypercholesterolemic hearts against IR injury.


Assuntos
Cardiotônicos/uso terapêutico , Proteínas de Transporte/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipercolesterolemia/metabolismo , Éteres Metílicos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta , Masculino , Proteínas de Membrana , Éteres Metílicos/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Ratos Sprague-Dawley , Sevoflurano , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
4.
J Zhejiang Univ Sci B ; 14(6): 511-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23733428

RESUMO

It had been proved that administration of sevoflurane for the first two minutes of reperfusion effectively protects the heart against reperfusion injury in rats in vivo. Our aim was to investigate the duration of effective sevoflurane administration and its underlying mechanism in isolated rat hearts exposed to global ischemia/reperfusion (I/R) injury. Adult male Sprague-Dawley rats were randomly divided into six groups (n=12): a sham-operation group, an I/R group, and four sevoflurane postconditioning groups (S2, S5, S10, and S15). In the S2, S5, S10, and S15 groups, the duration times of sevoflurane administration were 2, 5, 10, and 15 min after the onset of reperfusion, respectively. The isolated rat hearts were mounted on the Langendorff system, and after a period of equilibrium were subjected to 40 min global ischemia and 120 min reperfusion. Left ventricular (LV) hemodynamic parameters were monitored throughout each experiment and the data at 30 min of equilibrium and 30, 60, 90, and 120 min of reperfusion were analyzed. Myocardial infarct size at the end of reperfusion (n=7 in each group) and the expression of myocardial phosphorylated Akt (p-Akt) after 15-min reperfusion were determined in a duplicate set of six groups of rat hearts (n=5 in each group). Compared with the I/R group, the S5, S10, and S15 groups had significantly improved left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), and the maximal rate of rise or fall of the LV pressure (±dP/dtmax), and decreased myocardial infarct size (P<0.05), but not the S2 group. After 15 min of reperfusion, the expression of p-Akt was markedly up-regulated in the S5, S10, and S15 groups compared with that in the I/R group (P<0.05), but not in the S2 group. Sevoflurane postconditioning for 5 min was sufficient to activate Akt and exert maximal cardioprotection against I/R injury in isolated rat hearts.


Assuntos
Cardiotônicos/administração & dosagem , Éteres Metílicos/administração & dosagem , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Técnicas In Vitro , Masculino , Inibidores da Agregação Plaquetária/administração & dosagem , Ratos , Ratos Sprague-Dawley , Sevoflurano , Resultado do Tratamento
5.
Brain Res ; 1494: 1-8, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23219579

RESUMO

Dexmedetomidine (Dex) has been demonstrated to provide neuroprotection against ischemia/reperfusion (I/R) injury. However, the exact mechanism of this protection remains unknown. Here, we explored the neuroprotective effect of Dex in rats exposed to cerebral I/R-induced by middle cerebral artery occlusion (MCAO) and the role of phosphatidylinositol 3-kinase (PI3K)/Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase-3ß (GSK-3ß) in this protective action. Adult male Sprague-Dawley rats were subjected to MCAO for 90 min followed by reperfusion for 24h and Dex (15 µg/kg, i.v.) was administered immediately after the onset of MCAO. The neurological deficit score, cerebral infarct volume, brain edema, and neuron survival were evaluated at 24h of reperfusion. The effect of Dex on p-Akt, p-ERK1/2 and p-GSK-3ß expression in the ischemic hemisphere was assayed by Western blot. Treatment of rats exposed to I/R with Dex caused not only marked reduction in the neurological deficit score, cerebral infarct volume, and brain edema (P <0.01 vs. I/R alone), but also a decrease in neuron death in hippocampal CA1 and cortex (P<0.01 vs. I/R alone). The Dex-induced increment of neuron survival in the ischemic CA1 and cortex was diminished by the PI3K inhibitor LY294002 and the MEK inhibitor U0126. The increasing expressions of p-Akt and p-ERK1/2 induced by Dex in the ischemic hemisphere were markedly inhibited by LY294002 (or wortmannin) and U0126 (or PD98059), respectively. The up-regulation of p-GSK-3ß by Dex in the ischemic hemisphere was significantly decreased by both LY294002 (or wortmannin) and U0126 (or PD98059). Our data demonstrated that treatment with Dex reduced cerebral injury in rats exposed to transient focal I/R, and this was mediated by the activation of the PI3K/Akt and ERK1/2 pathways as well the phosphorylation of downstream GSK-3ß.


Assuntos
Dexmedetomidina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Quinases/efeitos dos fármacos , Traumatismo por Reperfusão/enzimologia , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...