Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(40): 16294-16298, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37772803

RESUMO

It is desired to design and construct more efficient enzymes with better performance to catalyze carbene N-H insertions for the synthesis of bioactive molecules. To this end, we exploited and designed a series of human neuroglobin (Ngb) mutants. As shown in this study, a double mutant, A15C/H64G Ngb, with an additional disulfide bond and a modified heme active site, exhibited yields up to >99% and total turnover numbers up to 33000 in catalyzing the carbene N-H insertions for aromatic amine derivatives, including those with a large size such as 1-aminopyrene. Moreover, for o-phenylenediamine derivatives, they underwent two cycles of N-H insertions, followed by cyclization to form quinoxalinones, as confirmed by the X-ray crystal structures. This study suggests that Ngb can be designed into a functional carbene transferase for efficiently catalyzing carbene N-H insertion reactions with a range of substrates. It also represents the first example of the formation of quinoxalinones catalyzed by an engineered heme enzyme.

2.
Biochemistry ; 62(2): 369-377, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34665595

RESUMO

The design of functional metalloenzymes is attractive for the biosynthesis of biologically important compounds, such as phenoxazinones and phenazines catalyzed by native phenoxazinone synthase (PHS). To design functional heme enzymes, we used myoglobin (Mb) as a model protein and introduced an artificial CXXC motif into the heme distal pocket by F46C and L49C mutations, which forms a de novo disulfide bond, as confirmed by the X-ray crystal structure. We further introduced a catalytic Tyr43 into the heme distal pocket and found that the F43Y/F46C/L49C Mb triple mutant and the previously designed F43Y/F46S Mb exhibit PHS-like activity (80-98% yields in 5-15 min), with the catalytic efficiency exceeding those of natural metalloenzymes, including o-aminophenol oxidase, laccase, and dye-decolorizing peroxidase. Moreover, we showed that the oxidative coupling product of 1,6-disulfonic-2,7-diaminophenazine is a potential pH indicator, with the orange-magenta color change at pH 4-5 (pKa = 4.40). Therefore, this study indicates that functional heme enzymes can be rationally designed by structural modifications of Mb, exhibiting the functionality of the native PHS for green biosynthesis.


Assuntos
Metaloproteínas , Mioglobina , Mioglobina/química , Heme/química , Oxazinas , Óxido Nítrico Sintase
3.
Arch Biochem Biophys ; 730: 109399, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116505

RESUMO

Heme proteins play vital roles in regulating the reactive oxygen/nitrogen species (ROS/RNS) levels in cells. In this study, we overexpressed human wild-type (WT) myoglobin (Mb) and its double mutant, F43H/H64A Mb with enhanced nitrite reductase (NIR) activity, in the typical representative triple-negative breast cancer cell, MDA-MB-231 cells. The results showed that the overexpression of F43H/H64A Mb increased the level of nitric oxide (NO) and the degree of oxidative stress, and then activated Akt/MAPK mediated apoptotic cascade, whereas WT Mb showed the opposite effect. This study indicates that Mb plays an important role in maintaining the balance of the cellular redox system and could thus be a valuable target for cancer therapy.


Assuntos
Neoplasias da Mama , Mioglobina , Humanos , Feminino , Mioglobina/genética , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Espécies Reativas de Oxigênio , Neoplasias da Mama/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Nitrogênio
4.
Molecules ; 27(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35889429

RESUMO

Imbalance in the cellular redox system is thought to be associated with the induction and progression of breast cancers, and heme proteins may regulate the redox balance. Cytochrome b5 (Cyt b5) is a small mitochondrial heme protein. Its function and regulating mechanism in breast cancer remain unknown. In this study, we elucidated the level of endogenous oxidative stress in breast cancer cells, MCF-7 cells (hormone receptor-positive cells) and MDA-MB-231 cells (triple-negative cells), and investigated the difference in Cyt b5 content. Based on the low content of Cyt b5 in MDA-MB-231 cells, the overexpression of Cyt b5 was found to regulate the oxidative stress and apoptosis cascades, including ERK1/2 and Akt signaling pathways. The overexpressed Cyt b5 MDA-MB-231 cells were shown to exhibit decreased oxidative stress, less phosphorylation of ERK1/2 and Akt, and less cleavage of caspases 3 and 9 upon treatment with H2O2, as compared to those of normal MDA-MB-231 cells. Moreover, the overexpressed Cyt b5 most likely functioned by interacting with its protein partner, Cyt c, as suggested by co-immunoprecipitation studies. These results indicated that Cyt b5 has different effects on breast cancer cells of different phenotypes, which provides useful information for understanding the multiple roles of Cyt b5 and provides clues for clinical treatment.


Assuntos
Neoplasias da Mama , Citocromos b5 , Neoplasias da Mama/genética , Citocromos b5/genética , Citocromos b5/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética
5.
RSC Adv ; 12(29): 18654-18660, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873322

RESUMO

Malachite green (MG)-contaminated wastewater resulting from industrialization causes a global problem because of its toxicity and widespread usage. Compared with traditional physical and chemical approaches, biodegradation provides a new route for the degradation of MG. As promising candidates for native enzymes, artificial enzymes have received tremendous attention for potential applications due to unlimited possibilities based on precise design. In this study, we rationally engineered artificial enzymes based on myoglobin (Mb) and neuroglobin (Ngb). We introduced an aspartic acid (H64D mutation) in the heme pocket of Mb. A distal histidine (F43H mutation) was further introduced into H64D Mb to obtain a double mutant of F43H/H64D Mb. Moreover, we used A15C/H64D Ngb as designed recently for comparison studies. The H64D Mb, F43H/H64D Mb, and A15C/H64D Ngb were found to catalyze MG degradation efficiently, with activities much higher than those of native enzymes, such as dye-decolorizing peroxidase and laccase (83-205-fold). The crystal structure of H64D Mb was solved and the interactions of MG and H64D Mb and A15C/H64D Ngb were investigated by using both experimental and molecular docking studies. The biodegradation products of MG were also revealed by ESI-MS analysis. Therefore, these artificial enzymes have potential applications in the biodegradation of MG in textile industries and fisheries.

6.
Chem Commun (Camb) ; 58(39): 5885-5888, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35471205

RESUMO

An artificial disulfide bond (Cys46-Cys61) was designed in the heme distal site of myoglobin, which regulates the conformation of the heme distal His64 and the protein reactivity, as confirmed by X-ray crystallography, EPR, and kinetic UV-vis studies. This study shows the successful design of a disulfide bond with suitable positions in globins, conferring a structure and function like those of the native human neuroglobin.


Assuntos
Dissulfetos , Mioglobina , Dissulfetos/química , Globinas/química , Heme/química , Humanos , Mioglobina/química , Neuroglobina , Conformação Proteica
7.
ACS Omega ; 7(13): 11510-11518, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415373

RESUMO

Human cytochrome c (hCyt c) is a crucial heme protein and plays an indispensable role in energy conversion and intrinsic apoptosis pathways. The sequence and structure of Cyt c were evolutionarily conserved and only a few naturally occurring mutants were detected in humans. Among those variable sites, position 81 was proposed to act as a peroxidase switch in the initiation stages of apoptosis. In this study, we show that Ile81 not only suppresses the intrinsic peroxidase activity but also is essential for Cyt c to interact with neuroglobin (Ngb), a potential protein partner. The kinetic assays showed that the peroxidase activity of the naturally occurring variant I81N was enhanced up to threefold under pH 5. The local stability of the Ω-loop D (residues 70-85) in the I81N variant was decreased. Moreover, the Alphafold2 program predicted that Ile81 forms stable contact with human Ngb. Meanwhile, the Ile81 to Asn81 missense mutation abolishes the interaction interface, resulting in a ∼40-fold decrease in binding affinity. These observations provide an insight into the structure-function relationship of the conserved Ile81 in vertebrate Cyt c.

8.
Biochem Biophys Res Commun ; 598: 26-31, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35151200

RESUMO

Globins are heme proteins such as hemoglobin (Hb), myoglobin (Mb) and neuroglobin (Ngb), playing important roles in biological system. In addition to normal functions, zebrafish Ngb was able to penetrate cell membranes, whereas less was known for other globin members. In this study, to improve the cell-membrane-penetrating activity of globins, we used sperm whale Mb as a model protein and constructed a quadruple mutant of G5K/Q8K/A19K/V21K Mb (termed 4K Mb), by introduction of four positive charges on the protein surface, which was designed according to the amino acid alignment with that of zebrafish Ngb. Spectroscopic and crystallographic studies showed that the four positively charged Lys residues did not affect the protein structure. Cell-membrane-penetrating essay further showed that 4K Mb exhibited enhanced activity compared to that of native Mb. This study provides valuable information for the effect of distribution of charged residues on the protein structure and the cell-membrane-penetrating activity of globins. Therefore, it will guide the design of protein-based biomaterials for biological applications.


Assuntos
Membrana Celular/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Cristalografia por Raios X , Fluoresceína-5-Isotiocianato/química , Humanos , Lisina/química , Células MCF-7 , Mutação , Mioglobina/genética , Mioglobina/farmacocinética , Espectrofotometria Ultravioleta , Cachalote
9.
Proteins ; 90(5): 1152-1158, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34982478

RESUMO

Human neuroglobin (Ngb) contains a heme group and three Cys residues (Cys46, Cys55, and Cys120) in the polypeptide chain. By introducing an additional Cys at position 15, the X-ray structure of A15C Ngb mutant was solved at a high resolution of 1.35 Å, which reveals the formation of both the native (C46C55) and the engineered (C15C120) disulfide bonds, likely playing a functional and structural role, respectively, according to the geometry analysis. Unexpectedly, 1,4-dioxane from the crystallization reagents was bound not only to the protein surface, but also to the heme distal pocket, providing insights into protein-ligand interactions for the globin and guiding the design of functional heme enzymes.


Assuntos
Globinas , Proteínas do Tecido Nervoso , Sítios de Ligação , Dissulfetos/química , Globinas/química , Globinas/genética , Globinas/metabolismo , Heme/química , Humanos , Ligantes , Proteínas do Tecido Nervoso/química , Neuroglobina , Raios X
10.
Molecules ; 26(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641382

RESUMO

Protein glycation is an important protein post-translational modification and is one of the main pathogenesis of diabetic angiopathy. Other than glycated hemoglobin, the protein glycation of other globins such as myoglobin (Mb) is less studied. The protein glycation of human Mb with ribose has not been reported, and the glycation sites in the Mb remain unknown. This article reports that d-ribose undergoes rapid protein glycation of human myoglobin (HMb) at lysine residues (K34, K87, K56, and K147) on the protein surface, as identified by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Moreover, glycation by d-ribose at these sites slightly decreased the rate of the met heme (FeIII) in reaction with H2O2 to form a ferryl heme (FeIV=O). This study provides valuable insight into the protein glycation by d-ribose and provides a foundation for studying the structure and function of glycated heme proteins.


Assuntos
Compostos Férricos/química , Heme/química , Peróxido de Hidrogênio/química , Mioglobina/química , Ribose/química , Cromatografia Líquida , Glicosilação , Humanos , Espectrometria de Massas por Ionização por Electrospray
11.
Front Bioeng Biotechnol ; 9: 664388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136471

RESUMO

The conversion of Kraft lignin in plant biomass into renewable chemicals, aiming at harvesting aromatic compounds, is a challenge process in biorefinery. Comparing to the traditional chemical methods, enzymatic catalysis provides a gentle way for the degradation of lignin. Alternative to natural enzymes, artificial enzymes have been received much attention for potential applications. We herein achieved the biodegradation of Kraft lignin using an artificial peroxidase rationally designed in myoglobin (Mb), F43Y/T67R Mb, with a covalently linked heme cofactor. The artificial enzyme of F43Y/T67R Mb has improved catalytic efficiencies at mild acidic pH for phenolic and aromatic amine substrates, including Kraft lignin and the model lignin dimer guaiacylglycerol-ß-guaiacyl ether (GGE). We proposed a possible catalytic mechanism for the biotransformation of lignin catalyzed by the enzyme, based on the results of kinetic UV-Vis studies and UPLC-ESI-MS analysis, as well as molecular modeling studies. With the advantages of F43Y/T67R Mb, such as the high-yield by overexpression in E. coli cells and the enhanced protein stability, this study suggests that the artificial enzyme has potential applications in the biodegradation of lignin to provide sustainable bioresource.

12.
Inorg Chem ; 60(4): 2839-2845, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33539081

RESUMO

Protein design has received much attention in the last decades. With an additional disulfide bond to enhance the protein stability, human A15C neuroglobin (Ngb) is an ideal protein scaffold for heme enzyme design. In this study, we rationally converted A15C Ngb into a multifunctional peroxidase by replacing the heme axial His64 with an Asp residue, where Asp64 and the native Lys67 at the heme distal site were proposed to act as an acid-base catalytic couple for H2O2 activation. Kinetic studies showed that the catalytic efficiency of A15C/H64D Ngb was much higher (∼50-80-fold) than that of native dehaloperoxidase, which even exceeds (∼3-fold) that of the most efficient native horseradish peroxidase. Moreover, the dye-decolorizing peroxidase activity was also comparable to that of some native enzymes. Electron paramagnetic resonance, molecular docking, and isothermal titration calorimetry studies provided valuable information for the substrate-protein interactions. Therefore, this study presents the rational design of an efficient multifunctional peroxidase based on Ngb with potential applications such as in bioremediation for environmental sustainability.


Assuntos
Neuroglobina/química , Peroxidase/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica
13.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008837

RESUMO

The treatment of environmental pollutants such as synthetic dyes and lignin has received much attention, especially for biotechnological treatments using both native and artificial metalloenzymes. In this study, we designed and engineered an efficient peroxidase using the O2 carrier myoglobin (Mb) as a protein scaffold by four mutations (F43Y/T67R/P88W/F138W), which combines the key structural features of natural peroxidases such as the presence of a conserved His-Arg pair and Tyr/Trp residues close to the heme active center. Kinetic studies revealed that the quadruple mutant exhibits considerably enhanced peroxidase activity, with the catalytic efficiency (kcat/Km) comparable to that of the most efficient natural enzyme, horseradish peroxidase (HRP). Moreover, the designed enzyme can effectively decolorize a variety of synthetic organic dyes and catalyze the bioconversion of lignin, such as Kraft lignin and a model compound, guaiacylglycerol-ß-guaiacyl ether (GGE). As analyzed by HPLC and ESI-MS, we identified several bioconversion products of GGE, as produced via bond cleavage followed by dimerization or trimerization, which illustrates the mechanism for lignin bioconversion. This study indicates that the designed enzyme could be exploited for the decolorization of textile wastewater contaminated with various dyes, as well as for the bioconversion of lignin to produce more value-added products.


Assuntos
Corantes/química , Lignina/metabolismo , Mioglobina/química , Peroxidase/metabolismo , Engenharia de Proteínas , Animais , Cromatografia Líquida de Alta Pressão , Cor , Guaifenesina/análogos & derivados , Heme/química , Peróxido de Hidrogênio/metabolismo , Cinética , Oxirredução , Polimerização , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Cachalote
14.
RSC Adv ; 11(26): 16090-16095, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35481174

RESUMO

Synthetic dyes such as malachite green (MG) have a wide range of applications. Meanwhile, they bring great challenges for environmental security and cause potential damages to human health. Compared with traditional approaches, enzymatic catalysis is an emerging technique for wastewater treatment. As alternatives to natural enzymes, artificial enzymes have received much attention for potential applications. In previous studies, we have rationally designed artificial enzymes based on myoglobin (Mb), such as by introducing a distal histidine (F43H mutation) and creating a channel to the heme pocket (H64A mutation). We herein show that the artificial enzyme of F43H/H64A Mb can be successfully applied for efficient biodegradation of MG under weak acid conditions. The degradation efficiency is much higher than those of natural enzymes, such as dye-decolorizing peroxidase and laccase (13-18-fold). The interaction of MG and F43H/H64A Mb was investigated by using both experimental and molecular docking studies, and the biodegradation products of MG were also revealed by UPLC-ESI-MS analysis. Based on these results, we proposed a plausible biodegradation mechanism of MG. With the high-yield of overexpression in E. coli cells, this study suggests that the artificial enzyme has potential applications in the biodegradation of MG in fisheries and textile industries.

16.
Biochem Biophys Res Commun ; 524(1): 77-82, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31980179

RESUMO

OBJECTIVES: Protein arginine methyltransferase 2 (PRMT2) is closely related to the occurrence and development of atherosclerosis. However, its underlying mechanisms remain to be elucidated. The purpose of this study is to observe the effect of overexpression of PRMT2 on the formation of foam cells and to explore its possible mechanism in RAW 264.7 macrophage. METHODS: Lentivirus vector of overexpression PRMT2 (LV-PRMT2) was constructed. LV-PRMT2 and lentivirus vector GV492 were transfected into RAW 264.7 macrophages, positive clone cells were screened by treatment with 4.0 µg/mL puromycin for 4 weeks. The macrophages were treated with ox-LDL (50 µg/mL) for 48 h to induce foaming. The lipid accumulation of macrophages was observed by oil red O staining. The levels of cellular total cholesterol (TC), free cholesterol (FC) and cholesteryl ester (CE) were measured by high performance liquid chromatography (HPLC) assays. The cholesterol efflux of macrophages was tested by the [3H] labeled cholesterol. The expressions of ATP binding cassette transporter A1 (ABCA1), ATP binding cassette transporter G1 (ABCG1), CD36 and scavenger receptor A1 (SR-A1) in macrophages were measured by Western Blot. RESULTS: The results showed that LV-PRMT2 and lentivirus vector has been successfully transfected into RAW 264.7 macrophage. Compared with the Vector group, the mRNA and protein expressions of PRMT2 were significantly up-regulated (P < 0.05). Compared with Control group, the expression of PRMT2 was significantly down-regulated in ox-LDL group (P < 0.05). A large number of red lipid droplets appeared in the cells in Vector group. Compared with Vector group, lipid droplets, the levels of TC, FC and CE and CE/TC, cholesterol efflux rate and expression of ABCA1 in RAW 264.7 macrophage was significantly decreased in LV-PRMT2 group (all P < 0.05). There was no significant difference about the expressions of ABCG1, CD36 and SR-A1 between LV-PRMT2 group and Vector group (all P > 0.05). CONCLUSIONS: Overexpression of PRMT2 inhibits the formation of foam cell induced by ox-LDL in RAW 264.7 macrophage, and the mechanism may be related to the increase of ABCA1 expression and ABCA1 mediated cholesterol efflux.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Arginina/metabolismo , Aterosclerose/metabolismo , Transporte Biológico , Antígenos CD36/metabolismo , Regulação da Expressão Gênica , Lentivirus/genética , Metilação , Camundongos , Células RAW 264.7 , RNA Mensageiro/metabolismo , Receptores Depuradores/metabolismo , Transfecção
17.
RSC Adv ; 10(73): 44768-44772, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516242

RESUMO

The function of the highly conserved residue Asn52 in human cytochrome c (H-Cyt c) is not fully understood. Herein, we show that the naturally occurring variant N52S H-Cyt c has a perturbed secondary structure, with a small fraction of high-spin species. Remarkably, it exhibits an enhanced peroxidase activity by 3-8-fold at neutral pH, as well as self-oxidation in reaction with H2O2. This study suggests that the H-bond network mediated by Asn52 is essential to suppress the apoptotic activity of H-Cyt c under physiological conditions.

18.
BMC Endocr Disord ; 19(1): 12, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670019

RESUMO

BACKGROUND: Zinc-α2-glycoprotein (ZAG) is a recently novel lipolytic adipokine implicated in regulation of glucose and lipid metabolism in many metabolic disorders. In vitro and animal studies suggest that thyroid hormones (TH) up-regulates ZAG production in hepatocytes. However, there is no data evaluating the possible relationship between ZAG and TH in a human model of hyperthyroidism. The objective of the present study is to assess the association of serum ZAG levels with TH and lipid profile in patients with hyperthyroidism before and after methimazole treatment. METHODS: A total of 120 newly diagnosed overt hyperthyroidism and 122 healthy control subjects were recruited. Of them, 39 hyperthyroidism patients were assigned to receive methimazole treatment as follow-up study for 2 months. RESULTS: The clinical consequence showed that serum ZAG levels were elevated in patients with hyperthyroidism (P < 0.01). Adjust for age, gender and BMI, serum ZAG levels were positively related with serum free T3 (FT3), free T4 (FT4) levels and negatively correlated with serum total cholesterol (TC), low density lipoprotein cholesterol (LDLC) levels in hyperthyroidism subjects (all P < 0.01). After methimazole treatment, serum ZAG levels were decreased and the decline was associated with decreased FT3, FT4 and increased TC levels (all P < 0.001). CONCLUSION: We conclude that ZAG may be involved in the pathogenesis of lipid metabolism disorder in patients with hyperthyroidism. TRIAL REGISTRATION: ChiCTR-ROC-17012943 . Registered 11 October 2017, retrospectively registered.


Assuntos
Biomarcadores/sangue , Hipertireoidismo/sangue , Metimazol/uso terapêutico , Proteínas de Plasma Seminal/sangue , Hormônios Tireóideos/sangue , Adulto , Antitireóideos/uso terapêutico , Feminino , Seguimentos , Humanos , Hipertireoidismo/diagnóstico , Hipertireoidismo/tratamento farmacológico , Masculino , Prognóstico , Estudos Prospectivos , Glicoproteína Zn-alfa-2
19.
RSC Adv ; 9(8): 4172-4179, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35520156

RESUMO

Human neuroglobin (Ngb) forms an intramolecular disulfide bond between Cys46 and Cys55, with a third Cys120 near the protein surface, which is a promising protein model for heme protein design. In order to protect the free Cys120 and to enhance the protein stability, we herein developed a strategy by designing an additional disulfide bond between Cys120 and Cys15 via A15C mutation. The design was supported by molecular modeling, and the formation of Cys15-Cys120 disulfide bond was confirmed experimentally by ESI-MS analysis. Molecular modeling, UV-Vis and CD spectroscopy showed that the additional disulfide bond caused minimal structural alterations of Ngb. Meanwhile, the disulfide bond of Cys15-Cys120 was found to enhance both Gdn·HCl-induced unfolding stability (increased by ∼0.64 M) and pH-induced unfolding stability (decreased by ∼0.69 pH unit), as compared to those of WT Ngb with a single native disulfide bond of Cys46-Cys55. Moreover, the half denaturation temperature (T m) of A15C Ngb was determined to be higher than 100 °C. In addition, the disulfide bond of Cys15-Cys120 has slight effects on protein function, such as an increase in the rate of O2 release by ∼1.4-fold. This study not only suggests a crucial role of the artificial disulfide in protein stabilization, but also lays the groundwork for further investigation of the structure and function of Ngb, as well as for the design of other functional heme proteins, based on the scaffold of A15C Ngb with an enhanced stability.

20.
Dalton Trans ; 47(39): 13788-13791, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30252009

RESUMO

The first La3+-selective metallohydrogel was constructed by using a facile gelator of a phenylalanine derivative containing an imidazole group, N-(1H-imidazol-4-yl)methylidene-l-phenylalanine, namely La-ImF, which exhibits multi-stimuli responsive properties, including to heat, shearing, pH, etc. Various measurements were also carried out to obtain insights into the mechanism of gelation. Moreover, the La-ImF hydrogel can adsorb toxic dyes, making it a potential candidate for sewage treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...