Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(7): 1852-1860, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819854

RESUMO

Metal-organic framework (MOF)-based heterostructures are attractive because they can provide versatile platforms for various applications but are limited by complex liquid epitaxial growth methods. Here, we employ photolithography to fabricate and control MOF-based heterostructured crystals via [4 + 4] photocycloaddition. A layered dysprosium-dianthracene framework, [Dy(NO3)3(depma2)1.5]·(depma2)0.5 (2) [depma2 = pre-photodimerized 9-diethylphosphonomethylanthracene (depma)] underwent a single-crystal-to-single-crystal transition at 140 °C to form [Dy(NO3)3(depma)(depma2)]·(depma2)0.5 (3). The dissociated anthracene moieties are face-to-face π-π interacted allowing a reversible photocycloaddition between 2 and 3. This structural transformation causes a luminescence switch between blue and yellow-green and thus can be used to fabricate erasable 2 + 3 heterostructured crystals for rewritable photonic barcodes. The internal strain at the heterostructure interface leads to photobending and straightening of the crystal, a photomechanical response that is fast, reversible and durable, even operating at 140 °C, making it promising for photoactuation. This work may inspire the development of intelligent MOF-based heterostructures for photonic applications.

2.
Chemistry ; 29(12): e202203454, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36445817

RESUMO

Photosensitive lanthanide-based single-molecule magnets (Ln-SMM) are very attractive for their potential applications in information storage, switching, and sensors. However, the light-driven structural transformation in Ln-SMMs hardly changes the coordination number of the lanthanide ion. Herein, for the first time it is reported that X-ray (λ=0.71073 Å) irradiation can break the coordination bond of Dy-OH2 in the three-dimensional (3D) metal-organic framework Dy2 (amp2 H2 )3 (H2 O)6 ⋅ 4H2 O (MDAF-5), in which the {Dy2 (OPO)2 } dimers are cross-linked by dianthracene-phosphonate ligands. The structural transformation proceeds in a single-crystal-to-single-crystal (SC-SC) fashion, forming the new phase Dy2 (amp2 H2 )3 (H2 O)4 ⋅ 4H2 O (MDAF-5-X). The phase transition is accompanied by a significant change in magnetic properties due to the alteration in coordination geometry of the DyIII ion from a distorted pentagonal bipyramid in MDAF-5 to a distorted octahedron in MDAF-5-X.

3.
Dalton Trans ; 51(32): 12026-12030, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35904084

RESUMO

Complexes α-Dy(depma)3Cl3 (α-DyCl), ß-Dy(depma)3Cl3 (ß-DyCl) and ß-Dy(depma)3Br3 (ß-DyBr) (depma = 9-diethylphosphono-methylanthracene) are reported. α-DyCl and ß-DyCl are polymorphs showing distinct magnetic dynamics with energy barriers of 32.3 K and 66.6 K. They also show distinct luminescence properties with emission peaks at 487 nm and 530 nm, respectively.

4.
Chemistry ; 28(42): e202200721, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35570193

RESUMO

Layered heterometallic 5f-3d uranyl phosphonates can exhibit unique luminescent and/or magnetic properties, but the fabrication and properties of their 2D counterparts have not been investigated. Herein we report three heterobimetallic uranyl phosphonates, namely, [(UO2 )3 M(2-pmbH)4 (H2 O)4 ] ⋅ 2H2 O [MU, M=Co(II), CoU; Mn(II), MnU; Zn(II), ZnU; 2-pmbH3 =2-(phosphonomethyl)benzoic acid]. They are isostructural and display two-dimensional layered structures where the M(II) centers are encapsulated inside the windows generated by the diamagnetic uranyl phosphonate layer. Each M(II) has an octahedral geometry filled with four water molecules in the equatorial positions and two phosphonate oxygen atoms in the axial positions. The uranium atoms adopt UO7 pentagonal bipyramidal and UO6 square bipyramidal geometries. The lattice and coordination water molecules can be released by thermal treatment and reabsorbed in a reversible manner, accompanied with changes of magnetic dynamics. Interestingly, the bulk samples of MU can be exfoliated in acetone via freezing and thawing processes forming nanosheets with single-layer or two-layer thickness (MU-ns). Magnetic studies revealed that the CoU and MnU systems exhibited field-induced slow magnetization relaxation at low temperature. Compared with crystalline CoU, the magnetic relaxation of the CoU-ns aggregates is significantly accelerated. Moreover, photoluminescence measured at 77 K showed slight red-shift of the five characteristic uranyl emission bands for ZnU-ns in comparison with those of the crystalline ZnU. This work gives the first examples of 2D materials based on 5f-3d heterometallic uranyl phosphonates and illustrates the impact of dimension reduction on their magnetic/optical properties.

5.
Dalton Trans ; 50(46): 17129-17139, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34779803

RESUMO

Ultrathin nanosheets of luminescent metal-organic frameworks or coordination polymers have been widely used for sensing ions, solvents and biomolecules but, as far as we are aware, not yet used for temperature sensing. Herein we report two luminescent uranyl phosphonates based on 2-(phosphonomethyl)benzoic acid (2-pmbH3), namely (UO2)(2-pmbH2)2 (1) and (H3O)[(UO2)2(2-pmb)(2-pmbH)] (2). The former has a supramolecular layer structure, composed of chains of corner-sharing {UO6} octahedra and {PO3C} tetrahedra which are connected by hydrogen bonds between phosphonate and carboxylic groups. Compound 2 possesses a unique 2D anionic framework structure, where the inorganic uranyl phosphonate chains made up of {UO7} and {PO3C} polyhedra are cross-linked by 2-pmb3- ligands. The carboxylic groups of 2-pmbH2- ligands are pendant on the two sides of the layers and form hydrogen bonds between the layers. Both compounds can be exfoliated in acetone via a top-down freeze-thaw method, resulting in nanosheets of two-layer thickness. Interestingly, the photoluminescence (PL) of 1 and 2 is highly temperature sensitive. Variable temperature PL studies revealed that compounds 1 and 2 can be used as thermometers in the temperature ranges 120-300 K and 100-280 K, respectively. By doping the nanosheets into polymer matrix, 1-ns@PMMA and 2-ns@PMMA were prepared. The PL intensity of 1-ns@PMMA is insensitive to temperature, unlike that of the bulk sample. While 2-ns@PMMA exhibits similar temperature-dependent luminescence behaviour to its bulk counterpart, thereby enabling its potential application as a thermometer in the temperature range 100-280 K.

6.
J Am Chem Soc ; 143(42): 17587-17598, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34644503

RESUMO

Nanotubular materials have garnered considerable attention since the discovery of carbon nanotubes. Although the layer-to-tube rolling up mechanism has been well recognized in explaining the formation of many inorganic nanotubes, it has not been generally applied to coordination polymers (CPs). To uncover the key factors that determine the rolling-up of layered CPs, we have chosen the Co/R-, S-Xpemp [Xpemp = (4-X-1-phenylethylamino)methylphosphonic acid, X = H, F, Cl, Br] systems and study how the weak interactions influence the formation of layered or tubular structures. Four pairs of homochiral isostructural compounds R-, S-Co(Xpemp)(H2O)2 [X = H (1H), F (2F), Cl (3Cl), Br (4Br)] were obtained with tubular structures. The inclusion of 3,3'-azobipyridine (ABP) guest molecules led to compounds R-, S-[Co(Xpemp)(H2O)2]4·ABP·H2O with layered structures when X was Cl (5Cl) and Br (6Br), but tubular compounds 1H and 2F when X was H and F. Layered structures were also obtained for racemic compounds meso-Co(Xpemp)(H2O)2 [X = F (7F), Cl (8Cl), Br (9Br)] using racemic XpempH2 as the reaction precursor, but not when X = H. A detailed study on R-6Br revealed that layer-to-tube transformation occurred upon removal of ABP under hydrothermal conditions, forming R-4Br with a tubular structure. Similar layer-to-tube conversion did not occur in organic solvents. The results demonstrate that weak interlayer interactions are a prerequisite but not sufficient for the rolling-up of the layers. In the present cases, water also provides a driving force in the layer-to-tube transformation. The experimental results were rationalized by theoretical calculations.

7.
Chem Sci ; 12(38): 12619-12630, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703547

RESUMO

Chiral transcription from the molecular level to the macroscopic level by self-organization has been a topic of considerable interest for mimicking biological systems. Homochiral coordination polymers (CPs) are intriguing systems that can be applied in the construction of artificial helical architectures, but they have scarcely been explored to date. Herein, we propose a new strategy for the generation of superhelices of 1D CPs by introducing flexible cyclohexyl groups on the side chains to simultaneously induce interchain van der Waals interactions and chain misalignment due to conformer interconversion. Superhelices of S- or R-Tb(cyampH)3·3H2O (S-1H, R-1H) [cyampH2 = S- or R-(1-cyclohexylethyl)aminomethylphosphonic acid] were obtained successfully, the formation of which was found to follow a new type of "chain-twist-growth" mechanism that had not been described previously. The design strategy used in this work may open a new and general route to the hierarchical assembly and synthesis of helical CP materials.

8.
J Am Chem Soc ; 143(35): 14071-14076, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34450022

RESUMO

Inspired by the exciting physical/chemical properties in metal-organic frameworks (MOFs) of the redox-active tetrathiafulvalene (TTF) ligands, nickel bis(dithiolene-dibenzoic acid), [Ni(C2S2(C6H4COOH)2)2], has been designed and developed as an inorganic analogue of the corresponding TTF-type donors (such as tetrathiafulvalene-tetrabenzoate, TTFTB), where a metal site (Ni) replaces the central C═C bond. In this work, [Ni(C2S2(C6H4COOH)2)2] and In3+ have been successfully assembled into a three-dimensional MOF, (Me2NH2+){InIII-[Ni(C2S2(C6H4COO)2)2]}·3DMF·1.5H2O (1, DMF = N,N-dimethylformamide), with satisfying chemical and thermal stabilities. With the combination of reversible redox activity and unsaturated metal sites originated from [Ni(C2S2(C6H4COOH)2)2], 1 showed a significantly enhanced performance in electrocatalytic CO2 reduction compared with the isomorphic MOF, (Me2NH2+)[InIII-(TTFTB)]·0.7C2H5OH·DMF (2, with TTFTB ligand). More importantly, by mimicking the active [NiS4] sites of formate dehydrogenase and CO-dehydrogenase, a prominently higher conversion rate and Faradaic efficiency (FE), with FEHCOO- increasing from 54.7% to 89.6% (at -1.3 V vs RHE, jHCOO- = 36.0 mA cm-2), were achieved in 1. Mechanistic investigations further confirm that [NiS4] can serve as a CO2 binding site and efficient catalytic center. This unprecedented effect of redox-active nickel dithiolene-based MOF catalysts on the performance of electroreduction of CO2 provides an important strategy for designing stable and efficient crystalline enzyme-mimicking catalysts for the conversion of CO2 into high-value chemical stocks.


Assuntos
Dióxido de Carbono/química , Estruturas Metalorgânicas/química , Catálise , Técnicas Eletroquímicas , Índio/química , Ligantes , Níquel/química , Oxirredução
9.
Chem Asian J ; 16(18): 2648-2658, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34288530

RESUMO

Controllable synthesis of uniformly distributed nanowires of coordination polymers with inherent physical functions is highly desirable but challenging. In particular, the combination of chirality and magnetism into nanowires has potential applications in multifunctional materials and spintronic devices. Herein, we report four pairs of enantiopure coordination polymers with formulae S-, R-Dy(cyampH)3 ⋅ CH3 COOH ⋅ 2H2 O (S-1, R-1), S-, R-Dy(cyampH)3 ⋅ 3H2 O (S-2, R-2), S-, R-Dy(cyampH)2 (C2 H5 COO) ⋅ 3H2 O (S-3, R-3) and S-, R-Dy(cyampH)3 ⋅ 0.5C2 H5 COOH ⋅ 2H2 O (S-4, R-4) [cyampH2 =S-, R-(1-cyclohexylethyl)aminomethylphosphonic acids], which were obtained depending on the pH of the reaction mixtures and the specific carboxylic acid used as pH regulator. Interestingly, compounds 3 were obtained as superlong nanowires, showing 1D neutral chain structure which contains both phosphonate and propionate anion ligands. While compounds 1, 2 and 4 appeared as block-like crystals, superhelices and nanorods, respectively, and exhibited similar neutral chain structures containing only phosphonate ligand. Slow magnetization relaxation characteristic of single-molecule magnet (SMM) behavior was observed for compounds S-1 and S-3. Theoretical calculations were performed to rationalize the magneto-structural relationships.

10.
Chem Asian J ; 16(11): 1456-1465, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861508

RESUMO

Metal-organic frameworks containing responsive organic linkers are attractive for potential applications in sensors and molecular devices. Herein we report three cobalt(II) phosphonates incorporating responsive dianthracene linkers, namely, Co2 (amp2 H2 )2 (H2 O)4 ⋅ 6H2 O (MDAF-1), Co2 (amp2 )(H2 O)4 ⋅ 2H2 O (MDAF-2) and Co(amp2 H2 ) ⋅ 2H2 O ⋅ 0.5DMF (MDAF-3), where amp2 H4 is pre-photodimerized 9-anthrylmethylphosphonic acid. MDAF-1 shows a layer structure in which dinuclear Co2 (PO3 H)2 units are inter-connected by dianthracene ligands. In MDAF-2 and MDAF-3, inorganic chains of corner-sharing {CoO4 } (or {CoO6 }) and {PO3 C} are cross-linked by dianthracene ligands into 3D frameworks. All compounds underwent thermo-induced phase transitions, first the de-solvation and then the de-dimerization of dianthracene (as well as the release of the remaining solvent molecules for MDAF-2 and -3), associated with magnetic changes. MDAF-1 can be exfoliated into single-layer nanosheets in water which show light-triggered luminescent changes.

11.
Chem Sci ; 12(3): 929-937, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34163859

RESUMO

Artificial smart materials with switchable multifunctionality are of immense interest owing to their wide application in sensors, displays and memory devices. Lanthanide complexes are promising multifunctional materials integrating optical and magnetic characteristics. However, synergistic manipulation of different physical properties in lanthanide systems is still challenging. Herein we designed and synthesized a mononuclear complex [DyIII(SCN)3(depma)2(4-hpy)2] (1), which incorporates 9-diethylphosphonomethylanthracene (depma) as a photo-active component and 4-hydroxypyridine (4-hpy) as a polar component. This compound shows several unusual features: (a) reversible thermo-responsive phase transition associated with the order-disorder transition of 4-hpy and SCN-, which leads to thermochromic behavior and dielectric anomaly; (b) reversible photo-induced dimerization of anthracene groups, which leads to synergistic switching of luminescence, magnetic and dielectric properties. To our knowledge, compound 1 is the first example of lanthanide complexes that show stimuli-triggered synergistic and reversible switching of luminescence, magnetic and dielectric properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...