Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 169(5): 97, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619640

RESUMO

The complete genome sequence of a novel badnavirus, tentatively named "fatsia badnavirus 1" (FaBV1, OM540428), was identified in Fatsia japonica. The infected plant displayed virus-like symptoms on leaves, including yellowing and chlorosis. The genome of FaBV1 is 7313 bp in length and similar in size and organization to other members of the genus Badnavirus (family Caulimoviridae), containing four open reading frames (ORFs), three of which are found in all known badnaviruses, and the other of which is only present in some badnaviruses. The virus has the genome characteristics of badnaviruses, including a tRNAMet binding site (5'-TCTGAATTTATAGCGCTA-3') and two cysteine-rich domains (C-X-C-2X-C-4X-H-4X-C and C-2X-C-11X-C-2X-C-4X-C-2X-C). Pairwise sequence comparisons of the RT+RNase H region indicated that FaBV1 shares 61.4-71.2% nucleotide (nt) sequence identity with other known badnaviruses, which is below the threshold (80% nt sequence identity in the RT+RNase H region) used for species demarcation in the genus Badnavirus. Phylogenetic analysis revealed that FaBV1, ivy ringspot-associated virus (IRSaV, MN850490.1), and cacao mild mosaic virus (CMMV, KX276640.1) together form a separate clade within the genus Badnavirus, suggesting that FaBV1 is a new member of the genus Badnavirus in the family Caulimoviridae. To our knowledge, this is the first report of a badnavirus infecting F. japonica.


Assuntos
Araliaceae , Badnavirus , Caulimoviridae , Badnavirus/genética , Filogenia , China , Ribonuclease H
2.
Plant Dis ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947493

RESUMO

Lily virus X (LVX) is a positive-sense ssRNA virus belonging to the genus Potexvirus in the family Alphaflexiviridae. LVX is known to infect plants of the genera Lilium and Tricyrtis in the family Liliacea. LVX was first reported in an asymptomatic lily (Lilium formosanum) from England (Stone, 1980), but has been shown to infect plants in the Netherlands (Chen et al. 2005), the United States (Jordan et al. 2008) and Japan (Nijo et al. 2018). To date, the complete genomes of two LVX isolates from the Netherlands and Japan have been reported. Paris polyphylla var. yunnanensis, known as Dianchonglou in China, is a perennial plant of the family Melanthiaceae (formerly belonging to the family Trillium). In China, its rhizome is commonly used as an antispasmodic agent for stroke and cancer treatment (Chang et al. 2017). From 2019 to 2022, leaf mottle and shrinkage which are typical symptoms of viral infections were observed on the leaves of P. polyphylla var. yunnanensis plants in Dianchonglou fields in Qujing, Yunnan. Disease incidence ranged from 19% to 45% across 5 fields (90 plants per field) in Qujing. To identify the possible viral pathogen(s) associated with the disease, the mirVanaTM miRNA isolation Kit was used to extract total RNA was from a mixed sample pool of 5 symptomatic leaf samples collected from the 5 fields. RNA sequencing library was constructed using TruSeqTM RNA sample preparation kit. Sequencing on the Illumina HiSeqTM 2500 platform (Illumina, USA) with 125-bp paired-end reads yielded 23,077,786 raw reads. 22,534,100 clean reads were obtained by removing reads of low quality and poly-N using Trimmomatic software (Bolger et al. 2014). By utilizing the paired-end splicing method in Trinity software (Grabherr et al. 2011) the the raw reads were De novo assembled into 184,596 contigs, of which 303 were related to viruses, including Paris mosaic necrosis virus (PMNV), Pear alphapartitivirus (PAPV), Dahlia mosaic virus (DMV), and Lily virus X (LVX). BLASTn analysis revealed that 12 contigs (lengths ranging from 344 nt to 5,981 nt, query cover 6% to 99%) were most similar (57.32% to 91.67% nt identities) to the genome sequences of LVX, suggesting a possible infection of LVX in the plants. To confirm the result, a full-length genomic sequence of LVX was obtained by reverse transcription polymerase chain reaction (RT-PCR) using specific primers designed based on the sequence of the assembled contigs. The PCR products were cloned into pGEM-T vector (Promega Corporation, USA) and sequenced using the Sanger method (Sangon Biotech, Shanghai, China). The obtained full-length genomic sequence of the LVX isolate (LVX-PP, accession number OM100017) was 5,981 nt in length. BLASTp analysis demonstrated that the putative Rep and CP of LVX-PP shared 76.27% to 81.05% and 80.81% to 81.82% aa sequence similarities with that of other LVX isolates, respectively. Maximum-likelihood phylogenetic trees inferred from the Rep and CP aa sequences showed that LVX-PP clustered closely with LVX isolates. The leaf samples were further analyzed using a lily virus X (LVX) ELISA kit (DEIAPV181, Creative Diagnostics, U.S.A.). Healthy P. polyphylla var. yunnanensis leaves were taken as a negative control and buffer solution as a blank control. The results showed a positive reaction for all five symptomatic plants (OD = 1.259 ± 0.007) relative to the negative (OD = 0.099) and blank (OD = 0.073) controls. These results indicate that LVX can infect P. polyphylla var. yunnanensis. To our knowledge, this is the first report that LVX has been detected in P. polyphylla var. yunnannensis. This study will serve as an important reference for the study of the host range of LVX. Further studies will be required to determine how LVX spreads between P. polyphylla var. yunnannensis and other host plants.

3.
Front Plant Sci ; 14: 1202634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680362

RESUMO

Background: Polygonatum kingianum has been widely used as a traditional Chinese medicine as well as a healthy food. Because of its highly variable morphology, this medicinal plant is often difficult to distinguish from other related verticillate leaf types of the Polygonatum species. The contaminants in P. kingianum products not only decrease the products' quality but also threaten consumer safety, seriously inhibiting the industrial application of P. kingianum. Methods: Nine complete chloroplast (cp) genomes of six verticillate leaf types of the Polygonatum species were de novo assembled and systematically analyzed. Results: The total lengths of newly sequenced cp genomes ranged from 155,437 to 155,977 bp, including 86/87 protein-coding, 38 tRNA, and 8 rRNA genes, which all exhibited well-conserved genomic structures and gene orders. The differences in the IR/SC (inverted repeats/single-copy) boundary regions and simple sequence repeats were detected among the verticillate leaf types of the Polygonatum cp genomes. Comparative cp genomes analyses revealed that a higher similarity was conserved in the IR regions than in the SC regions. In addition, 11 divergent hotspot regions were selected, providing potential molecular markers for the identification of the Polygonatum species with verticillate leaf types. Phylogenetic analysis indicated that, as a super barcode, plastids realized a fast and efficient identification that clearly characterized the relationships within the verticillate leaf types of the Polygonatum species. In brief, our results not only enrich the data on the cp genomes of the genus Polygonatum but also provide references for the P. kingianum germplasm resource protection, herbal cultivation, and drug production. Conclusion: This study not only accurately identifies P. kingianum species, but also provides valuable information for the development of molecular markers and phylogenetic analyses of the Polygonatum species with verticillate leaf types.

4.
Arch Virol ; 168(5): 154, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145182

RESUMO

The complete genome sequence of a putative novel closterovirus, tentatively named "Dregea volubilis closterovirus 1" (DvCV1, GenBank accession no. MZ779122), infecting Dregea volubilis in China was determined using high-throughput sequencing (HTS). The complete genome sequence of DvCV1 consists of 16,165 nucleotides (nt) and contains nine ORFs. The genome structure of DvCV1 is typical of members of the genus Closterovirus. Complete genome sequence analysis showed that DvCV1 shares 41.4-48.4% nucleotide sequence identity with other known closteroviruses. The putative RNA-dependent RNA polymerase (RdRp), heat shock protein 70-like protein (HSP70h), and coat protein (CP) of DvCV1 share 46.80-62.65%, 31.06-51.80%, and 28.34-37.37% amino acid sequence identity, respectively, with the RdRp, HSP70h and CP of other closteroviruses. Phylogenetic analysis based on HSP70h aa sequences placed DvCV1 alongside other members of the genus Closterovirus in the family Closteroviridae. These results suggest that DvCV1 is a new member of the genus Closterovirus. This is the first report of a closterovirus infecting D. volubilis.


Assuntos
Closteroviridae , Closterovirus , Closterovirus/genética , Filogenia , Genoma Viral , RNA Viral/genética , Closteroviridae/genética , Fases de Leitura Aberta , Doenças das Plantas
5.
Arch Virol ; 168(5): 139, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059886

RESUMO

Through high-throughput sequencing, a novel citlodavirus, tentatively named "Myrica rubra citlodavirus 1" (MRV1, accession no. OP374189), was isolated from the leaves of Myrica rubra in Yunnan exhibiting narrow deformity of leaf tips, shrinkage, and chlorosis along the veins. The complete genome sequence was determined and analyzed using cloning and Sanger sequencing. MRV1 is a single-stranded circular non-enveloped DNA virus with a genome size of 3775 nucleotides and contains six open reading frames (ORFs). The virion-sense genome strand encodes a coat protein (CP, nt 750-1,493, 247 aa), two hypothetical movement proteins (V3, nt 382-666, 94 aa; and V2, nt 461-895, 144 aa), and one movement protein (MP, nt 1,527-2,438, 303 aa). The complementary strand of the genome encodes two replication proteins (RepA, nt 3,712-2,834, 292 aa; Rep, nt 2,867-2,553, 104 aa). The MRV1 genome contains the stem-loop motif 5'-TAATATTAC-3', which is a highly conserved nonanucleotide motif found in the origin of virion-strand replication in geminiviruses. Genome sequence alignment analysis showed that citrus chlorotic dwarf associated virus (CCDaV, accession no. JQ920490) shared the highest nucleotide sequence similarity (66.10% identity) with MRV1. Phylogenetic analysis showed that CCDaV is the closest known relative of MRV1, and that these viruses clustered in a single branch within a clade consisting of citlodaviruses. These results indicate that MRV1 should be regarded as a new species of the genus Citlodavirus in the family Geminiviridae.


Assuntos
Myrica , Filogenia , Genoma Viral , China , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Folhas de Planta , Doenças das Plantas
6.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834483

RESUMO

Group Ⅲ WRKY transcription factors (TFs) play pivotal roles in responding to the diverse abiotic stress and secondary metabolism of plants. However, the evolution and function of WRKY66 remains unclear. Here, WRKY66 homologs were traced back to the origin of terrestrial plants and found to have been subjected to both motifs' gain and loss, and purifying selection. A phylogenetic analysis showed that 145 WRKY66 genes could be divided into three main clades (Clade A-C). The substitution rate tests indicated that the WRKY66 lineage was significantly different from others. A sequence analysis displayed that the WRKY66 homologs had conserved WRKY and C2HC motifs with higher proportions of crucial amino acid residues in the average abundance. The AtWRKY66 is a nuclear protein, salt- and ABA- inducible transcription activator. Simultaneously, under salt stress and ABA treatments, the superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, as well as the seed germination rates of Atwrky66-knockdown plants generated by the clustered, regularly interspaced, short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system, were all lower than those of wild type (WT) plants, but the relative electrolyte leakage (REL) was higher, indicating the increased sensitivities of the knockdown plants to the salt stress and ABA treatments. Moreover, RNA-seq and qRT-PCR analyses revealed that several regulatory genes in the ABA-mediated signaling pathway involved in stress response of the knockdown plants were significantly regulated, being evidenced by the more moderate expressions of the genes. Therefore, the AtWRKY66 likely acts as a positive regulator in the salt stress response, which may be involved in an ABA-mediated signaling pathway.


Assuntos
Arabidopsis , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Arabidopsis/genética , Sistemas CRISPR-Cas , Regulação da Expressão Gênica de Plantas , Mutação , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Estresse Salino , Tolerância ao Sal/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo
7.
Arch Virol ; 167(11): 2365-2370, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35857147

RESUMO

A novel double-stranded RNA (dsRNA) virus, tentatively named "Paris alphapartitivirus 1" (ParAPV1, OL960006-OL960007), was detected in Paris polyphylla var. yunnanensis plants exhibiting leaf chlorosis and shrinkage symptoms in Yunnan. Its complete genome sequence was determined using Illumina and Sanger sequencing. ParAPV1 has a bipartite genome that consists of dsRNA1 (1,917 bp) encoding the viral RNA-dependent RNA polymerase (RdRp), and dsRNA2 (1,818 bp) encoding the putative coat protein (CP). Sequence comparisons showed that the RdRp and CP of ParAPV1 are most similar to those of pear alphapartitivirus (PpPV2), with 69.97% and 54.21% amino acid sequence identities respectively. Phylogenetic analysis of the RdRp amino acid sequences of ParAPV1 and other partitiviruses showed that ParAPV1 cluster with viruses in a clade containing alphapartitiviruses, and that its closest known relatives are PpPV2 (BBA66577) and rose partitivirus (RoPV, ANQ45203S). Taken together, these results suggest that ParAPV1 should be regarded as a new member of genus Alphapartitivirus in the family Partitiviridae. This is the first report of a partitivirus infecting P. polyphylla var. yunnanensis.


Assuntos
Ascomicetos , Besouros , Liliaceae , Melanthiaceae , Vírus de RNA , Animais , Ascomicetos/genética , China , Genoma Viral , Liliaceae/genética , Filogenia , Doenças das Plantas , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Análise de Sequência de DNA
8.
PeerJ ; 10: e13222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402092

RESUMO

Background: Dendrobium catenatum is a valuable traditional medicinal herb with high commercial value. D. catenatum stems contain abundant polysaccharides which are one of the main bioactive components. However, although some genes related to the synthesis of the polysaccharides have been reported, more key genes need to be further elucidated. Results: In this study, the contents of polysaccharides and mannose in D. catenatum stems at four developmental stages were compared, and the stems' transcriptomes were analyzed to explore the synthesis mechanism of the polysaccharides. Many genes involved in starch and sucrose metabolisms were identified by KEGG pathway analysis. Further analysis found that sucrose synthase (SUS; EC 2.4.1.13) gene maybe participated in the polysaccharide synthesis. Hence, we further investigated the genomic characteristics and evolution relationships of the SUS family in plants. The result suggested that the SUS gene of D. catenatum (DcSUS) had undergone the expansion characterized by tandem duplication which might be related to the enrichment of the polysaccharides in D. catenatum stems. Moreover, expression analyses of the DcSUS displayed significant divergent patterns in different tissues and could be divided into two main groups in the stems with four developmental stages. Conclusion: In general, our results revealed that DcSUS is likely involved in the metabolic process of the stem polysaccharides, providing crucial clues for exploiting the key genes associated with the polysaccharide synthesis.


Assuntos
Dendrobium , Transcriptoma , Transcriptoma/genética , Dendrobium/genética , Perfilação da Expressão Gênica , Polissacarídeos
9.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269886

RESUMO

Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense response. However, the molecular mechanisms underlying MAPK cascades are still very elusive, largely because of our poor understanding of how they relay the signals. The MAPK cascade is composed of MAPK, MAPKK, and MAPKKK. They transfer signals through the phosphorylation of MAPKKK, MAPKK, and MAPK in turn. MAPKs are organized into a complex network for efficient transmission of specific stimuli. This review summarizes the research progress in recent years on the classification and functions of MAPK cascades under various conditions in plants, especially the research status and general methods available for identifying MAPK substrates, and provides suggestions for future research directions.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Desenvolvimento Vegetal
10.
Plant Cell Rep ; 41(5): 1209-1227, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35218399

RESUMO

KEY MESSAGES: Plant PIFs have been characterized, WGDs contributed to the expansion of class II PIFs; BdPIFs localized in the nucleus; BdPIF4/5C most likely response to high temperature and light stress. Phytochrome interacting factors (PIFs) belong to a small subset of basic helix-loop-helix (bHLH) transcription factors (TFs). As cellular signaling hubs, PIFs integrate multiple external and internal signals to orchestrate the regulation of the transcriptional network, thereby actuating the pleiotropic aspects of downstream morphogenesis. Nevertheless, the origin, phylogeny and function of plant PIFs are not well understood. To elucidate their evolution history and biological function, the comprehensive genomic analysis of the PIF genes was conducted using 40 land plant genomes plus additionally four alga lineages and also performed their gene organizations, sequence features and expression patterns in different subfamilies. In this study, phylogenetic analysis displayed that 246 PIF gene members retrieved from all embryophytes could be divided into three main clades, which were further felled into five distinct classes (Class I-V). The duplications of Class II PIFs were associated specially with whole genome duplication (WGD) events during the plant evolution process. Sequence analysis showed that PIF proteins had a conserved APB motif, and its crucial amino acid residues were relatively high proportion in the average abundance. As expected, subcellular localization analysis revealed that all BdPIF proteins were localized to the nucleus. Especially, BdPIF4/5C showed the highest expression level at high temperature, and the most significant hypocotyl elongation phenotype of overexpression of BdPIFs in Arabidopsis, which was consistent with the function and phenotype of AtPIF4. In brief, our findings provide a novel perspective on the origin and evolutionary history of plant PIFs, and lays a foundation for further investigation on its functions in plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Fitocromo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Filogenia , Fitocromo/genética , Fitocromo/metabolismo
11.
Arch Virol ; 167(2): 645-650, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35037104

RESUMO

Paris mitovirus 1 (ParMV1) is a positive-sense RNA virus that was detected in diseased Paris polyphylla var. yunnanensis plants in Wenshan, Yunnan. The complete genome sequence of ParMV1 is 2,751 nucleotides in length, and the genome structure is typical of mitoviruses. The ParMV1 genome has a single open reading frame (ORF; nt 358-2,637) that encodes an RNA-dependent RNA polymerase (RdRp) with a predicted molecular mass of 86.42 kDa. ParMV1 contains six conserved motifs (Ι-VΙ) that are unique to mitoviruses. The 5' and 3' termini of the genome are predicted to have a stable secondary structure, with the reverse complementary sequence forming a panhandle structure. Comparative genome analysis revealed that the RdRp of ParMV1 shares 23.1-40.6% amino acid (aa) and 32.3-45.7% nucleotide (nt) sequence identity with those of other mitoviruses. Phylogenetic analysis based on RdRp aa sequences showed that ParMV1 clusters with mitoviruses and hence should be considered a new member of the genus Mitovirus in the family Mitoviridae. This is the first report of a novel mitovirus infecting Paris polyphylla var. yunnanensis.


Assuntos
Liliaceae , Vírus de RNA , China , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Vírus de RNA/genética , RNA Viral/genética
13.
Arch Virol ; 166(11): 3199-3205, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34387750

RESUMO

A novel virus, Paris virus 2 (ParV2), was isolated from diseased Paris polyphylla var. yunnanensis, and its complete genome sequence was determined and analyzed. ParV2 is a positive-sense single-stranded RNA (+ssRNA) virus with a genome size of 4,118 nucleotides. The ParV2 genome contains six putative open reading frames (ORFs) that encode proteins with predicted molecular weights of 40.14, 100.26, 7.31, 7.85, 26.09, and 8.77 kDa. The first ORF (ORF1) of ParV2 encodes a putative protein of 40.14 kDa (P40, nt: 20-1,096), whiles the second ORF (ORF2, 888 aa) containing the GDD motif encodes the highly conserved RNA-dependent RNA polymerase protein (RdRP, nt:20-2,683, P100, 100.26 kDa) of viruses in the family Tombusviridae. Multiple sequence alignments analysis showed that the complete genome sequence of ParV2 shares 31.7-55.5% nucleotide sequence identities with viruses in the family Tombusviridae. Ginger chlorotic fleck-associated tombusvirus (GCFaV-1, Accession No. QKE30557) had the highest sequence identity (55.5%) with ParV2. GCFaV-1 also shares 59.2% RdRP and 34.9% CP amino acid sequence identities with ParV2. Sequence comparisons and phylogenetic analysis of RdRP suggested that ParV2 is a novel member of the family Tombusviridae, and its closest known relative is GCFaV-1.


Assuntos
Melanthiaceae/virologia , Filogenia , Doenças das Plantas/virologia , Tombusviridae/genética , Genoma Viral , Fases de Leitura Aberta , RNA Polimerase Dependente de RNA/genética , Tombusviridae/isolamento & purificação , Proteínas Virais/genética
14.
Mitochondrial DNA B Resour ; 6(8): 2420-2421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350354

RESUMO

Polygonatum zanlanscianense Pamp. is a plant species of the genus Polygonatum (Asparagaceae) distributed widely in China. The complete chloroplast genome of P. zanlanscianense was sequenced by Illumina sequencing technology. The plastome is 155,609 bp in length with a typical quadripartite structure, including one small single copy (SSC, 18,427 bp), one large copy (LSC, 84,438 bp), and two inverted repeat regions (IRs, 26,372 bp each). The cp genome encoded 132 genes, including 38 tRNA, 8 rRNA, and 86 protein-coding genes. The overall GC content is 37.7%. The ML phylogenetic analysis based on the cp genomes indicated that the genus Polygonatum is sister to the genus Heteropolygonatum within the tribe Polygonateae, P. zanlanscianense is sister to P. cirrhifolium within the genus Polygonatum. This study provides an important theoretical foundation for varieties identification, the phylogenetic relationship of P. zanlanscianense. Furthermore, this article takes a radical reform of Polygonati rhizoma.

15.
Arch Virol ; 166(7): 2045-2050, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33944994

RESUMO

A novel negative-stranded (ns) RNA virus tentatively named "Yunnan paris negative-stranded virus" (YPNSV), was isolated from Paris polyphylla var. yunnanensis plants exhibiting leaf chlorosis and mosaic symptoms in Yunnan. Its complete genome sequence was determined using Illumina and Sanger sequencing. YPNSV has a bipartite genome that consists of a negative-stranded (ns) RNA1 encoding the viral RNA-dependent RNA polymerase (RdRp, p251), an ambisense RNA2 coding for the putative movement protein (MP, p46) and nucleocapsid protein (NP, p39), with the two open reading frames separated by a long intergenic region that is rich in A and U. Sequence comparisons showed that the RdRp, MP, and NP of YPNSV are most similar to those of watermelon crinkle leaf-associated virus 2 (WCLaV-2), with 69.1%, 50.4%, and 60.9% amino acid sequence identity, respectively. Phylogenetic analysis based on deduced amino acid sequences of RdRp and NP showed that YPNSV clustered in a clade with coguviruses and that its closest known relative is WCLaV-2. Based on the above results, YPNSV should be regarded as a new member of genus Coguvirus, family Phenuiviridae.


Assuntos
Genoma Viral/genética , Melanthiaceae/virologia , Vírus de RNA de Sentido Negativo/genética , Sequência de Aminoácidos , China , Vírus de RNA de Sentido Negativo/classificação , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , Proteínas Virais/genética
16.
J Nat Prod ; 84(3): 570-587, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496169

RESUMO

The lateral roots of Aconitum carmichaelii, known in Chinese as fuzi, are officially recognized as a materia medica in the Chinese Pharmacopoeia and used culinarily to prepare herbal soups. A strategy combining UPLC-qToF-MS analysis of A. carmichaelii and its intraspecies and interspecies chemometrics study was developed to examine the distribution of Aconitum marker metabolites. Four diterpenoid alkaloids were recognized to be important markers in fuzi, and another 15 markers were identified to differentiate A. carmichaelii from adulterant species. The detected fuzi markers, mesaconitine (47) and hypaconitine (51), are known to be the principal toxins in this herb, while fuziline (6) and benzoylmesaconine (25) are associated with its medicinal properties. Additional marker compounds have been detected in other Aconitum species that are useful for identifying adulteration. This study provides a useful resource for detecting traditional Chinese medicine (TCM) adulterants and assisting in the quality control of botanical products in TCM and beyond.


Assuntos
Aconitum/química , Alcaloides/análise , Diterpenos/análise , Medicamentos de Ervas Chinesas/análise , Aconitina/análogos & derivados , Aconitina/análise , Aconitum/classificação , China , Cromatografia Líquida , Contaminação de Medicamentos , Espectrometria de Massas , Medicina Tradicional Chinesa , Estrutura Molecular , Raízes de Plantas/química
17.
Arch Virol ; 165(9): 2127-2131, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32632824

RESUMO

The complete genome sequence of a putative novel potyvirus, tentatively named "Polygonatum kingianum virus 1" (PKgV1), infecting Polygonatum kingianum in China was determined (GenBank accession no. MK427056). PKgV1 has a genome organization that is typical of potyviruses, with a single large open reading frame (nt 123-9236) that encodes a 3037-aa polyprotein that is predicted to be cleaved into 10 mature proteins by virus-encoded proteases. Nine cleavage sites and several conserved motifs were identified in PKgV1 by comparative sequence analysis. Pairwise comparisons revealed that the PKgV1 polyprotein shares 52.0-56.2% nucleotide and 49.2-52.8% amino acid sequence identity with members of the genus Potyvirus. Phylogenetic analysis indicated that PKgV1 clustered with members of the genus Potyvirus and that it is closely related to but distinct from lettuce mosaic virus (LMV, accession no. KJ161186). These results suggest that Polygonatum kingianum virus 1 (PKgV1) is a new member of the genus Potyvirus of the family Potyviridae.


Assuntos
Genoma Viral , Doenças das Plantas/virologia , Polygonatum/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , Sequência de Aminoácidos , Sequência de Bases , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/genética , Potyvirus/classificação
18.
Arch Virol ; 165(4): 985-988, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100138

RESUMO

The complete genome sequence of a novel potyvirus, tentatively named "paris virus 1" (ParV1, GenBank accession no. MN549985), infecting Paris polyphylla var. yunnanensis was determined in this study. A single large open reading frame (nt 96-9818) encoding a 3240-aa polyprotein that is predicted to be cleaved into 10 mature proteins was detected in the ParV1 genome. Comparative analysis of the ParV1 genome sequence with those of other potyviruses identified nine cleavage sites and conserved motifs that are typical features of potyviruses. Pairwise sequence comparisons showed that the ParV1 polyprotein shares 49.6-65.1% nucleotide and 47.1-68.9% amino acid sequence identity with viruses of the genus Potyvirus. BLAST analysis revealed that ParV1 shares 65.1% nucleotide and 68.9% amino acid sequence identity with Thunberg fritillary mosaic virus (TFMV, accession no. CAI59123), its closest known relative. These results suggest that paris virus 1 (ParV1) is a new member of the genus Potyvirus.


Assuntos
Genoma Viral , Melanthiaceae/virologia , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , Sequência de Bases , Fases de Leitura Aberta , Filogenia , Potyvirus/classificação
19.
Food Chem ; 214: 119-128, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27507456

RESUMO

This review comprehensively summarizes the existing knowledge regarding the chemical implications of anthocyanin glycosyl acylation, the effects of acylation on the stability of acylated anthocyanins and the corresponding mechanisms. Anthocyanin glycosyl acylation commonly refers to the phenomenon in which the hydroxyl groups of anthocyanin glycosyls are esterified by aliphatic or aromatic acids, which is synthetically represented by the acylation sites as well as the types and numbers of acyl groups. Generally, glycosyl acylation increases the in vitro and in vivo chemical stability of acylated anthocyanins, and the mechanisms primarily involve physicochemical, stereochemical, photochemical, biochemical or environmental aspects under specific conditions. Additionally, the acylation sites as well as the types and numbers of acyl groups influence the stability of acylated anthocyanins to different degrees. This review could provide insight into the optimization of the stability of anthocyanins as well as the application of suitable anthocyanins in food, pharmaceutical and cosmetic industries.


Assuntos
Antocianinas/metabolismo , Acilação
20.
Zhongguo Zhong Yao Za Zhi ; 38(4): 504-10, 2013 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-23713273

RESUMO

OBJECTIVE: In order to obtain functional genes, a normalized stems cDNA library was constructed from medicinal plant Dendrobium officinale. METHOD: SMART (switching mechanism at 5' end of RNA transcript) cDNA synthesis combined with DSN (duplex-specific nuclease) normalization was applied to construct the normalized full-length cDNA library of D. officinale. RESULT: The titer of cDNA library was about 1.3 x 10(6) cfu x mL(-1) and the average insertion size was about 1.5 kb with high recombination rate (93.9%). Random selected 163 positive clones were sequenced at single side. Bio-information analysis indicated that 147 from 150 high-quality unique sequences matched corresponding homologous proteins, and they participated in various biological processes based on GO (gene ontology). There were 8 clones with complete coding sequence, which presumed to be full-length genes. CONCLUSION: These results showed preliminarily that we successfully constructed a normalized full-length cDNA library of D. officinale which could be used to screen the functional genes related to metabolic pathways of medicinal ingredients.


Assuntos
Dendrobium/genética , Biblioteca Gênica , Análise de Sequência de DNA/métodos , Sequência de Bases , Clonagem Molecular , DNA Complementar/biossíntese , DNA Complementar/genética , Dados de Sequência Molecular , Plantas Medicinais/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...