Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(33): 11851-11863, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556777

RESUMO

E-OLCN photocatalyst was synthesized by oxygen doping of low molecular weight carbon nitride (LCN) with ethanol solvent stripping. The enhanced light absorption, fast electron transport rate, and photogenerated carrier separation efficiency of E-OLCN leads to the excellent photocatalytic degradation performance compared with the original materials. The synergistic effect of oxygen doping and ethanol solvent stripping plays a significant role for the modulation of electronic and structural properties of the prepared catalysts. Methyl orange (MO) and rhodamine B (RhB) are chosen as typical pollutants for the application of photocatalytic degradation. The E-OLCN sample exhibits outstanding photocatalytic degradation performance, where the rate constant k (1 × 10-2 min-1) of E-OLCN (1.68) is 2.9 times than that of O-LCN (0.58) and 8.8 times than that of pristine LCN (0.19) for MO. Moreover, modulated E-OLCN shows good stability after cycling experiments and the activity still achieved 90%. The detailed mechanism for MO degradation was proposed with the technical support of liquid chromatography-mass spectrometry (LC-MS) and electron spin resonance (EPR). The superoxide radical (·O2-) is the main active species and the MO molecule could be decomposition completely.

2.
RSC Adv ; 12(2): 655-663, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35425147

RESUMO

Polyaluminum chloride (PAC) is an inorganic polymer material that has the advantages of a simple preparation process and special electronic structure. It is considered to be the most efficient and widely used flocculation material for water treatment. In this work, PAC has been used as a Lewis acid catalyst in interdisciplinary fields because of its polynuclear Al-O cation structure. Further, its catalytic mechanism in green organic synthesis has been studied in detail by using the multicomponent Biginelli reaction as the probe. The effect of solvent on the self-assembly and aggregation process of PAC materials was investigated using optical microscopy, UV-Vis spectrophotometry, particle size analysis, XPS, IR, SEM and HR-TEM. The results show that the PAC materials have different morphological characteristics in different solvents. The Al-O-Al cations were transformed in the ethanol solvent to form new multi-nuclear cation aggregates Alb, which could be used as inorganic micro-nano reactors with unique synergistic catalysis in catalytic reactions. This is the first time the role of PAC in the Biginelli reaction has been analyzed with a liquid in situ infrared instrument, which provided favorable evidence for the speculated reaction mechanism. The PAC-ethanol system is, therefore, considered to be a green, efficient (best yield >99%), economic and recyclable catalyst for catalyzing organic synthesis reactions. The development and utilization of PAC materials in organic synthesis will bring new vitality to this cheap material, which is widely used in industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...