Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 300: 105178, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636824

RESUMO

Employing microbial systems for the bioremediation of contaminated waters represent a potential option, however, limited understanding of the underlying mechanisms hampers the implication of microbial-mediated bioremediation. The omics tools offer a promising approach to explore the molecular basis of the bioremediation process. Here, a mass spectrometry-based quantitative proteome profiling approach was conducted to explore the differential protein levels in cadmium-treated Paramecium multimicronucleatum. The Proteome Discoverer software was used to identify and quantify differentially abundant proteins. The proteome profiling generated 7,416 peptide spectral matches, yielding 2824 total peptides, corresponding to 989 proteins. The analysis revealed that 29 proteins exhibited significant (p ≤ 0.05) differential levels, including a higher abundance of 6 proteins and reduced levels of 23 proteins in Cd2+ treated samples. These differentially abundant proteins were associated with stress response, energy metabolism, protein degradation, cell growth, and hormone processing. Briefly, a comprehensive proteome profile in response to cadmium stress of a newly isolated Paramecium has been established that will be useful in future studies identifying critical proteins involved in the bioremediation of metals in ciliates. SIGNIFICANCE: Ciliates are considered a good biological indicator of chemical pollution and relatively sensitive to heavy metal contamination. A prominent ciliate, Paramecium is a promising candidate for the bioremediation of polluted water. The proteins related to metal resistance in Paramecium species are still largely unknown and need further exploration. In order to identify and reveal the proteins related to metal resistance in Paramecia, we have reported differential protein abundance in Paramecium multimicronucleatum in response to cadmium stress. The proteins found in our study play essential roles during stress response, hormone processing, protein degradation, energy metabolism, and cell growth. It seems likely that Paramecia are not a simple sponge for metals but they could also transform them into less toxic derivatives or by detoxification by protein binding. This data will be helpful in future studies to identify critical proteins along with their detailed mechanisms involved in the bioremediation and detoxification of metal ions in Paramecium species.


Assuntos
Cádmio , Paramecium , Proteoma , Proteínas de Protozoários , Cádmio/toxicidade , Cádmio/farmacologia , Proteoma/metabolismo , Proteoma/efeitos dos fármacos , Paramecium/metabolismo , Paramecium/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Biodegradação Ambiental , Proteômica/métodos
2.
J Comp Neurol ; 528(13): 2218-2238, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32072640

RESUMO

The ability to rapidly change gene expression patterns is essential for differentiation, development, and functioning of the brain. Throughout development, or in response to environmental stimuli, gene expression patterns are tightly regulated by the dynamic interplay between transcription activators and repressors. Nuclear receptor corepressor 1 (NCoR1) and silencing mediator for retinoid or thyroid-hormone receptors (SMRT) are the best characterized transcriptional co-repressors from a molecular point of view. They mediate epigenetic silencing of gene expression in a wide range of developmental and homeostatic processes in many tissues, including the brain. For instance, NCoR1 and SMRT regulate neuronal stem cell proliferation and differentiation during brain development and they have been implicated in learning and memory. However, we still have a limited understanding of their regional and cell type-specific expression in the brain. In this study, we used fluorescent immunohistochemistry to map their expression patterns throughout the adult mouse brain. Our findings reveal that NCoR1 and SMRT share an overall neuroanatomical distribution, and are detected in both excitatory and inhibitory neurons. However, we observed striking differences in their cell type-specific expression in glial cells. Specifically, all oligodendrocytes express NCoR1, but only a subset express SMRT. In addition, NCoR1, but not SMRT, was detected in a subset of astrocytes and in the microglia. These novel observations are corroborated by single cell transcriptomics and emphasize how NCoR1 and SMRT may contribute to distinct biological functions, suggesting an exclusive role of NCoR1 in innate immune responses in the brain.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Correpressor 1 de Receptor Nuclear/biossíntese , Correpressor 2 de Receptor Nuclear/biossíntese , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/genética , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...