Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(9): e2313464121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38346211

RESUMO

Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future.


Assuntos
Bioimpressão , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Córnea , Bioimpressão/métodos , Impressão Tridimensional , Alicerces Teciduais/química , Hidrogéis/química
2.
Phytomedicine ; 125: 155342, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295665

RESUMO

BACKGROUND: Type 2 diabetes is often linked with osteoporosis (T2DOP), a condition that accelerates bone degeneration and increases the risk of fractures. Unlike conventional menopausal osteoporosis, the diabetic milieu exacerbates the likelihood of fractures and osteonecrosis. In particular poliumoside (Pol), derived from Callicarpa kwangtungensis Chun, has shown promising anti-oxidant and anti-inflammatory effects. Yet, its influence on T2DOP remains to be elucidated. PURPOSE: The focus of this study was to elucidate the influence of Pol in HGHF-associated ferroptosis and its implications in T2DOP. STUDY DESIGN: A murine model of T2DOP was established using a minimal dosage of streptozotocin (STZ) through intraperitoneal infusion combined with a diet high in fat and sugar. Concurrently, to mimic the diabetic condition in a lab environment, bone mesenchymal stem cells (BMSCs) were maintained in a high-glucose and high-fat (HGHF) setting. METHODS: The impact of Pol on BMSCs in an HGHF setting was determined using methods, such as BODIPY-C11, FerroOrange staining, mitochondrial functionality evaluations, and Western blot methodologies, coupled with immunoblotting and immunofluorescence techniques. To understand the role of Pol in a murine T2DOP model, techniques including micro-CT, hematoxylin and eosin (H&E) staining, dual-labeling with calcein-alizarin red, and immunohistochemistry were employed for detailed imaging and histological insights. RESULTS: Our findings suggest that Pol acts against HGHF-induced bone degradation and ferroptosis, as evidenced by an elevation in glutathione (GSH) and a decline in malondialdehyde (MDA) levels, lipid peroxidation, and mitochondrial reactive oxygen species (ROS). Furthermore, Pol treatment led to increased bone density, enhanced GPX4 markers, and reduced ROS in the distal femur region. On investigating the underlying mechanism of action, it was observed that Pol triggers the Nrf2/GPX4 pathway, and the introduction of lentivirus-Nrf2 negates the beneficial effects of Pol in HGHF-treated BMSCs. CONCLUSION: Pol is effective in treating T2DOP by activating the Nrf2/GPX4 signaling pathway to inhibit ferroptosis.


Assuntos
Ácidos Cafeicos , Diabetes Mellitus Tipo 2 , Ferroptose , Glicosídeos , Osteoporose , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle
3.
Brain-X ; 1(1)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37818250

RESUMO

Surgery is the most frequent treatment for patients with brain tumors. The construction of full-scale human brain models, which is still challenging to realize via current manufacturing techniques, can effectively train surgeons before brain tumor surgeries. This paper aims to develop a set of three-dimensional (3D) printing approaches to fabricate customized full-scale human brain models for surgery training as well as specialized brain patches for wound healing after surgery. First, a brain patch designed to fit a wound's shape and size can be easily printed in and collected from a stimuli-responsive yield-stress support bath. Then, an inverse 3D printing strategy, called "peeling-boiled-eggs," is proposed to fabricate full-scale human brain models. In this strategy, the contour layer of a brain model is printed using a sacrificial ink to envelop the target brain core within a photocurable yield-stress support bath. After crosslinking the contour layer, the as-printed model can be harvested from the bath to photo crosslink the brain core, which can be eventually released by liquefying the contour layer. Both the brain patch and full-scale human brain model are successfully printed to mimic the scenario of wound healing after removing a brain tumor, validating the effectiveness of the proposed 3D printing approaches.

4.
Oncol Lett ; 26(3): 402, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37600326

RESUMO

Intracranial Rosai-Dorfman disease (RDD) is a rare, self-limiting histiocytic disease of unknown etiology. Extranodal marginal zone lymphoma of the mucosa-associated lymphoid tissue (MALT lymphoma) is also rare and intracranial RDD complicated by MALT lymphoma is even rarer. The present study reports a case of a 55-year-old female who was admitted to The Second Affiliated Hospital of Jiaxing University (Jiaxing, China) with headache for half a month and ptosis of the right eyelid for 4 days. Computerised tomography and magnetic resonance imaging revealed a right parasellar tumor and, subsequently, subtotal resection of the tumor was performed. Postoperative pathology revealed intracranial RDD complicated by MALT lymphoma. The patient received chemotherapy after surgery and achieved good therapeutic effects. After 12 months of follow-up, the residual tumor disappeared and the ptosis prominently improved. To the to the best of the authors' knowledge, the present case is the first reported case of an adult intracranial RDD complicated by MALT lymphoma.

5.
Biofabrication ; 15(4)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37579750

RESUMO

Heart valve disease has become a serious global health problem, which calls for numerous implantable prosthetic valves to fulfill the broader needs of patients. Although current three-dimensional (3D) bioprinting approaches can be used to manufacture customized valve prostheses, they still have some complications, such as limited biocompatibility, constrained structural complexity, and difficulty to make heterogeneous constructs, to name a few. To overcome these challenges, a sacrificial scaffold-assisted direct ink writing approach has been explored and proposed in this work, in which a sacrificial scaffold is printed to temporarily support sinus wall and overhanging leaflets of an aortic valve prosthesis that can be removed easily and mildly without causing any potential damages to the valve prosthesis. The bioinks, composed of alginate, gelatin, and nanoclay, used to print heterogenous valve prostheses have been designed in terms of rheological/mechanical properties and filament formability. The sacrificial ink made from Pluronic F127 has been developed by evaluating rheological behavior and gel temperature. After investigating the effects of operating conditions, complex 3D structures and homogenous/heterogenous aortic valve prostheses have been successfully printed. Lastly, numerical simulation and cycling experiments have been performed to validate the function of the printed valve prostheses as one-way valves.


Assuntos
Bioimpressão , Tinta , Humanos , Valva Aórtica , Impressão Tridimensional , Alicerces Teciduais/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Hidrogéis/química
6.
Food Sci Nutr ; 11(4): 2036-2048, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37051369

RESUMO

Oxidative stress is preferentially treated as a risk factor for the development and progression of osteoporosis. Corynoline as a component of Corydalis bungeana Turcz presents antioxidative and anti-inflammatory properties. In the present study, the effects of Corynoline on osteoblasts following hydrogen peroxide (H2O2)-induced injury were evaluated accompanied by the investigation of the molecular mechanisms involved. It was found that Corynoline downregulated the intracellular reactive oxygen species (ROS) generation and restored the osteogenic potential of the disrupted osteoblasts by H2O2 exposure. Furthermore, Corynoline was revealed to activate the Nrf2/HO-1 signaling pathway, while ML385 (an Nrf2 inhibitor) would prevent the Corynoline-mediated positive effects on the disrupted osteoblasts. In terms of the animal experiments, Corynoline treatment contributed to a significantly alleviated bone loss. These findings indicate that Corynoline may significantly attenuate the H2O2-induced oxidative damage of osteoblasts via the Nrf2/HO-1 signaling pathway, providing novel insights to the development of treatments for osteoporosis induced by oxidative injury.

7.
Int Immunopharmacol ; 117: 109893, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842234

RESUMO

Osteoporosis is a prevalent bone metabolic disease in menopause, and long-term medication is accompanied by serious side effects. Ginger, a food spice and traditional medicine with ancient history, exhibits the potential to alleviate osteoporosis in preclinical experiments, whereas its complex composition leads to ambiguous pharmacological mechanisms. The purpose of this study was to investigate the effect and mechanism of Ced in estrogen-deficient osteoporosis, a sesquiterpene alcohol recently discovered from Ginger with multiple pharmacological properties. RANKL was stimulated BMM (bone marrow macrophages) differentiation into osteoclasts in vitro. And the osteoclast activity and number were assessed by TRAcP and SEM. We found that Ced mitigated RANKL-induced osteoclastogenesis by descending the ROS content and obstructing NFATc1, NF-κB, and MAPK signaling. Also, Ced-mediated anti-osteolytic property was found in ovariectomized mice by Micro-CT scanning and histological staining. Summarily, our works demonstrated the anti-osteoporotic potential of Cedrol in Ginger for the first time, which also offered more pharmacological evidence for Ginger as food or medicine used for bone metabolic disease.


Assuntos
Osteoporose , Zingiber officinale , Feminino , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Osteoclastos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteogênese , NF-kappa B/metabolismo , Estrogênios/metabolismo , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/metabolismo , Diferenciação Celular
8.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574991

RESUMO

Direct contact between cells expressing either ephrin ligands or Eph receptor tyrosine kinase produces diverse developmental responses. Transmembrane ephrinB ligands play active roles in transducing bi-directional signals downstream of EphB/ephrinB interaction. However, it has not been well understood how ephrinB relays transcellular signals to neighboring cells and what intracellular effectors are involved. Here, we report that kindlin2 can mediate bi-directional ephrinB signaling through binding to a highly conserved NIYY motif in the ephrinB2 cytoplasmic tail. We show this interaction is important for EphB/ephrinB-mediated integrin activation in mammalian cells and for blood vessel morphogenesis during zebrafish development. A mixed two-cell population study revealed that kindlin2 (in ephrinB2-expressing cells) modulates transcellular EphB4 activation by promoting ephrinB2 clustering. This mechanism is also operative for EphB2/ephrinB1, suggesting that kindlin2-mediated regulation is conserved for EphB/ephrinB signaling pathways. Together, these findings show that kindlin2 enables EphB4/ephrinB2 bi-directional signal transmission.


Assuntos
Transdução de Sinais , Peixe-Zebra , Animais , Receptores da Família Eph/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Efrina-B1/metabolismo , Mamíferos/metabolismo
9.
Cells ; 11(19)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36231001

RESUMO

ß2 integrins are expressed on all leukocytes. Precise regulation of the ß2 integrin is critical for leukocyte adhesion and trafficking. In neutrophils, ß2 integrins participate in slow rolling. When activated by inside-out signaling, fully activated ß2 integrins mediate rapid leukocyte arrest and adhesion. The two activation pathways, starting with selectin ligand engagement and chemokine receptor ligation, respectively, converge on phosphoinositide 3-kinase, talin-1, kindlin-3 and Rap1. Here, we focus on recent structural insights into autoinhibited talin-1 and autoinhibited trimeric kindlin-3. When activated, both talin-1 and kindlin-3 can bind the ß2 cytoplasmic tail at separate but adjacent sites. We discuss possible pathways for talin-1 and kindlin-3 activation, recruitment to the plasma membrane, and their role in integrin activation. We propose new models of the final steps of integrin activation involving the complex of talin-1, kindlin-3, integrin and the plasma membrane.


Assuntos
Antígenos CD18 , Talina , Antígenos CD18/metabolismo , Integrinas/metabolismo , Ligantes , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Receptores de Quimiocinas , Selectinas , Talina/metabolismo
10.
Nat Cardiovasc Res ; 1(5): 462-475, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35990517

RESUMO

Atherosclerosis is accompanied by a CD4 T cell response to apolipoprotein B (APOB). Major Histocompatibility Complex (MHC)-II tetramers can be used to isolate antigen-specific CD4 T cells by flow sorting. Here, we produce, validate and use an MHC-II tetramer, DRB1*07:01 APOB-p18, to sort APOB-p18-specific cells from peripheral blood mononuclear cell samples from 8 DRB1*07:01+ women with and without subclinical cardiovascular disease (sCVD). Single cell RNA sequencing showed that transcriptomes of tetramer+ cells were between regulatory and memory T cells in healthy women and moved closer to memory T cells in women with sCVD. TCR sequencing of tetramer+ cells showed clonal expansion and V and J segment usage similar to those found in regulatory T cells. These findings suggest that APOB-specific regulatory T cells may switch to a more memory-like phenotype in women with atherosclerosis. Mouse studies showed that such switched cells promote atherosclerosis.

11.
Cell Rep ; 39(9): 110876, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649374

RESUMO

ß2 integrins are leukocyte-specific adhesion molecules that are essential for leukocyte recruitment. The lack of tools for reporting ß2 integrin activation in mice hindered the study of ß2 integrin-related immune responses in vivo. Here, we generated a humanized ß2 integrin knockin mouse strain by targeting the human ß2 integrin coding sequence into the mouse Itgb2 locus to enable imaging of ß2 integrin activation using the KIM127 (extension) and mAb24 (high-affinity) reporter antibodies. Using a CXCL1-induced acute inflammation model, we show the local dynamics of ß2 integrin activation in arresting neutrophils in vivo in venules of the mouse cremaster muscle. Activated integrins are highly concentrated in a small area at the rear of arresting neutrophils in vivo. In a high-dose lipopolysaccharide model, we find that ß2 integrins are activated in association with elevated neutrophil adhesion in lung and liver. Thus, these mice enable studies of ß2 integrin activation in vivo.


Assuntos
Antígenos CD18 , Neutrófilos , Animais , Antígenos CD18/genética , Adesão Celular , Moléculas de Adesão Celular , Integrinas , Camundongos , Ativação de Neutrófilo
12.
Annu Rev Chem Biomol Eng ; 13: 431-455, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35378042

RESUMO

This review discusses the complex behaviors in diverse chemical and biochemical systems to elucidate their commonalities and thus help develop a mesoscience methodology to address the complexities in even broader topics. This could possibly build a new scientific paradigm for different disciplines and could meanwhile provide effective tools to tackle the big challenges in various fields, thus paving a path toward combining the paradigm shift in science with the breakthrough in technique developments. Starting with our relatively fruitful understanding of chemical systems, the discussion focuses on the relatively pristine but very intriguing biochemical systems. It is recognized that diverse complexities are multilevel in nature, with each level being multiscale and the complexity emerging always at mesoscales in mesoregimes. Relevant advances in theoretical understandings and mathematical tools are summarized as well based on case studies, and the convergence between physics and mathematics is highlighted.

13.
Blood ; 139(24): 3480-3492, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35167661

RESUMO

Integrins are transmembrane receptors that mediate cell-cell and cell-extracellular matrix adhesion. Although all integrins can undergo activation (affinity change for ligands), the degree of activation is most spectacular for integrins on blood cells. The ß2 integrins are exclusively expressed on the surface of all leukocytes including neutrophils, lymphocytes, and monocytes. They are essential for many leukocyte functions and are strictly required for neutrophil arrest from rolling. The inside-out integrin activation process receives input from chemokine receptors and adhesion molecules. The integrin activation pathway involves many cytoplasmic signaling molecules such as spleen tyrosine kinase, other kinases like Bruton's tyrosine kinase, phosphoinositide 3-kinases, phospholipases, Rap1 GTPases, and the Rap1-GTP-interacting adapter molecule. These signaling events ultimately converge on talin-1 and kindlin-3, which bind to the integrin ß cytoplasmic domain and induce integrin conformational changes: extension and high affinity for ligand. Here, we review recent structural and functional insights into how talin-1 and kindlin-3 enable integrin activation, with a focus on the distal signaling components that trigger ß2 integrin conformational changes and leukocyte adhesion under flow.


Assuntos
Antígenos CD18 , Talina , Antígenos CD18/metabolismo , Adesão Celular/fisiologia , Integrinas/metabolismo , Leucócitos/metabolismo , Talina/metabolismo
14.
Science ; 375(6577): 214-221, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025664

RESUMO

Atherosclerosis is an inflammatory disease of the artery walls and involves immune cells such as macrophages. Olfactory receptors (OLFRs) are G protein­coupled chemoreceptors that have a central role in detecting odorants and the sense of smell. We found that mouse vascular macrophages express the olfactory receptor Olfr2 and all associated trafficking and signaling molecules. Olfr2 detects the compound octanal, which activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome and induces interleukin-1ß secretion in human and mouse macrophages. We found that human and mouse blood plasma contains octanal, a product of lipid peroxidation, at concentrations sufficient to activate Olfr2 and the human ortholog olfactory receptor 6A2 (OR6A2). Boosting octanal levels exacerbated atherosclerosis, whereas genetic targeting of Olfr2 in mice significantly reduced atherosclerotic plaques. Our findings suggest that inhibiting OR6A2 may provide a promising strategy to prevent and treat atherosclerosis.


Assuntos
Aldeídos/metabolismo , Aterosclerose/metabolismo , Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Receptores Odorantes/metabolismo , Adulto , Aldeídos/análise , Aldeídos/sangue , Aldeídos/farmacologia , Animais , Aorta , Aterosclerose/tratamento farmacológico , Humanos , Inflamassomos/metabolismo , Interleucina-1alfa/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Receptores Odorantes/antagonistas & inibidores , Receptores Odorantes/genética , Transdução de Sinais
15.
J Immunol ; 208(3): 745-752, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031577

RESUMO

Cystic fibrosis (CF) is an inherited life-threatening disease accompanied by repeated lung infections and multiorgan inflammation that affects tens of thousands of people worldwide. The causative gene, cystic fibrosis transmembrane conductance regulator (CFTR), is mutated in CF patients. CFTR functions in epithelial cells have traditionally been thought to cause the disease symptoms. Recent work has shown an additional defect: monocytes from CF patients show a deficiency in integrin activation and adhesion. Because monocytes play critical roles in controlling infections, defective monocyte function may contribute to CF progression. In this study, we demonstrate that monocytes from CFTRΔF508 mice (CF mice) show defective adhesion under flow. Transplanting CF mice with wild-type (WT) bone marrow after sublethal irradiation replaced most (60-80%) CF monocytes with WT monocytes, significantly improved survival, and reduced inflammation. WT/CF mixed bone marrow chimeras directly demonstrated defective CF monocyte recruitment to the bronchoalveolar lavage and the intestinal lamina propria in vivo. WT mice reconstituted with CF bone marrow also show lethality, suggesting that the CF defect in monocytes is not only necessary but also sufficient to cause disease. We also show that monocyte-specific knockout of CFTR retards weight gains and exacerbates dextran sulfate sodium-induced colitis. Our findings show that providing WT monocytes by bone marrow transfer rescues mortality in CF mice, suggesting that similar approaches may mitigate disease in CF patients.


Assuntos
Adesão Celular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Monócitos/imunologia , Monócitos/transplante , Animais , Transplante de Medula Óssea , Líquido da Lavagem Broncoalveolar/citologia , Colite/patologia , Fibrose Cística/patologia , Integrinas/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL
16.
Materials (Basel) ; 14(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443189

RESUMO

Deformation of metals has attracted great interest for a long time. However, the constitutive models for viscoplastic deformation at high strain rates are still under intensive development, and more physical mechanisms are expected to be involved. In this work, we employ the newly-proposed methodology of mesoscience to identify the mechanisms governing the mesoscale complexity of collective dislocations, and then apply them to improving constitutive models. Through analyzing the competing effects of various processes on the mesoscale behavior, we have recognized two competing mechanisms governing the mesoscale complex behavior of dislocations, i.e., maximization of the rate of plastic work, and minimization of the elastic energy. Relevant understandings have also been discussed. Extremal expressions have been proposed for these two mesoscale mechanisms, respectively, and a stability condition for mesoscale structures has been established through a recently-proposed mathematical technique, considering the compromise between the two competing mechanisms. Such a stability condition, as an additional constraint, has been employed subsequently to close a two-phase model mimicking the practical dislocation cells, and thus to take into account the heterogeneous distributions of dislocations. This scheme has been exemplified in three increasingly complicated constitutive models, and improves the agreements of their results with experimental ones.

17.
Zool Res ; 42(4): 514-524, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34254745

RESUMO

Normal spermatogenic processes require the scrotal temperature to be lower than that of the body as excessive heat affects spermatogenesis in the testes, reduces sperm quality and quantity, and even causes infertility. Endoplasmic reticulum stress (ERS) is a crucial factor in many pathologies. Although several studies have linked ERS to heat stress, researchers have not yet determined which ERS signaling pathways contribute to heat-induced testicular damage. Melatonin activates antioxidant enzymes, scavenges free radicals, and protects the testes from inflammation; however, few studies have reported on the influence of melatonin on heat-induced testicular damage. Using a murine model of testicular hyperthermia, we observed that heat stress causes both ERS and apoptosis in the testes, especially in the spermatocytes. These observations were confirmed using the mouse spermatocyte cell line GC2, where the Atf6 and Perk signaling pathways were activated during heat stress. Knockout of the above genes effectively reduced spermatocyte damage caused by heat stress. Pretreatment with melatonin alleviated heat-induced apoptosis by inhibiting the Atf6 and Perk signaling pathways. This mitigation was dependent on the melatonin receptors. In vivo experiments verified that melatonin treatment relieved heat-induced testicular damage. In conclusion, our results demonstrated that ATF6 and PERK are important mediators for heat-induced apoptosis, which can be prevented by melatonin treatment. Thus, our study highlights melatonin as a potential therapeutic agent in mammals for subfertility/infertility induced by testicular hyperthermia.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Temperatura Alta/efeitos adversos , Melatonina/farmacologia , Espermatócitos/efeitos dos fármacos , Testículo/fisiologia , eIF-2 Quinase/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/genética
18.
Nat Commun ; 12(1): 3872, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162836

RESUMO

The tyrosine phosphatase CD45 is a major gatekeeper for restraining T cell activation. Its exclusion from the immunological synapse (IS) is crucial for T cell receptor (TCR) signal transduction. Here, we use expansion super-resolution microscopy to reveal that CD45 is mostly pre-excluded from the tips of microvilli (MV) on primary T cells prior to antigen encounter. This pre-exclusion is diminished by depleting cholesterol or by engineering the transmembrane domain of CD45 to increase its membrane integration length, but is independent of the CD45 extracellular domain. We further show that brief MV-mediated contacts can induce Ca2+ influx in mouse antigen-specific T cells engaged by antigen-pulsed antigen presenting cells (APC). We propose that the scarcity of CD45 phosphatase activity at the tips of MV enables or facilitates TCR triggering from brief T cell-APC contacts before formation of a stable IS, and that these MV-mediated contacts represent the earliest step in the initiation of a T cell adaptive immune response.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígenos Comuns de Leucócito/imunologia , Microvilosidades/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Células Cultivadas , Feminino , Células HEK293 , Humanos , Células Jurkat , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microvilosidades/metabolismo , Fosforilação/imunologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/imunologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo
19.
Food Chem ; 353: 129521, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33735773

RESUMO

Distilled spent grain (DSG) is the biggest by-product in baijiu (Chinese liquor) production, releasing approximately 23.44 million tons every year. Aiming at comprehensive identification of more bioactive peptides, in this work, the new bioassay-guided proteomics and Biolynx peptide sequencer based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) were developed. Moreover, 22 peptides with angiotensin converting enzyme (ACE) inhibitory activities were identified. Seven peptides were successfully quantified using electrospray ionization with triple-quadrupole mass spectrometry (ESI-QQQ-MS) in the multiple reaction monitoring (MRM). Of these identified peptides, Pro-Arg was the most abundant (92.14 µg g-1 dry weight (DW)) and acted as a competitive inhibitor of ACE by molecular docking. Therefore, peptides from DSG can be considered as promising candidates for ACE inhibition; in addition, the new strategy for peptide sequencing can be extended to any food matrices containing peptide mixture or protein hydrolysate.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/análise , Cromatografia Líquida de Alta Pressão , Peptídeos/análise , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Hidrolisados de Proteína/química , Água/química
20.
Blood ; 137(1): 29-38, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32777822

RESUMO

Integrin-mediated neutrophil adhesion starts by arrest from rolling. Activation of integrins involves conformational changes from an inactive, bent conformation to an extended conformation (E+) with high affinity for ligand binding (H+). The cytoplasmic protein kindlin-3 is necessary for leukocyte adhesion; mutations of kindlin-3 cause leukocyte adhesion deficiency type 3. Kindlin-3 binds the ß2-integrin cytoplasmic tail at a site distinct from talin-1, but the molecular mechanism by which kindlin-3 activates ß2-integrins is unknown. In this study, we measured the spatiotemporal dynamics of kindlin-3 and ß2-integrin conformation changes during neutrophil and HL-60 cell rolling and arrest under flow. Using high-resolution quantitative dynamic footprinting microscopy and kindlin-3-fluorescent protein (FP) fusion proteins, we found that kindlin-3 was recruited to the plasma membrane in response to interleukin-8 (IL-8) before induction of the H+ ß2-integrin conformation. Intravital imaging revealed that EGFP-kindlin-3-reconstituted, kindlin-3-knockout neutrophils arrest in vivo in response to CXCL1. EGFP-kindlin-3 in primary mouse neutrophils was also recruited to the plasma membrane before arrest. Upon arrest, we found small clusters of high-affinity ß2-integrin molecules within large areas of membrane-proximal kindlin-3 FP. Deletion of kindlin-3 or its pleckstrin homology (PH) domain in neutrophil-like HL-60 cells completely abolished H+ ß2-integrin induction. IL-8 also triggered recruitment of the isolated kindlin-3 PH domain to the plasma membrane before arrest. In summary, we showed that the kindlin-3 PH domain is necessary for recruitment to the plasma membrane, where full-length kindlin-3 is indispensable for the induction of high-affinity ß2-integrin.


Assuntos
Antígenos CD18/metabolismo , Migração e Rolagem de Leucócitos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Infiltração de Neutrófilos/fisiologia , Neutrófilos/metabolismo , Animais , Membrana Celular/metabolismo , Células HL-60 , Humanos , Camundongos , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...