Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36836882

RESUMO

The sustainability of shrimp aquaculture can be achieved through the development of greenhouse and aquaponic rearing modes, which are classified as heterotrophic and autotrophic bacterial aquaculture systems. However, there have been few investigations into the discrepancies between the intestinal and water microbiota of these two rearing methods. In this study, we collected shrimp samples from greenhouse-rearing (WG) and aquaponic-rearing (YG) ponds, and water samples (WE, YE), and investigated the intestinal and water microbiota between the two rearing modes. The results, through alpha and beta diversity analyses, reveal that there was basically no significant difference between shrimp intestine WG and YG (p > 0.05) or between rearing water WE and YE (p > 0.05). At the phylum and genus levels, the common bacteria between WE and WG differed significantly from those of YE and YG. The analysis of the top six phyla shows that Proteobacteria and Patescibacteria were significantly more abundant in the WG group than those in the YG group (p < 0.05). Conversely, Actinobacteriota, Firmicutes, and Verrucomicrobiota were significantly more abundant in the YG group than those in the WG group (p < 0.05). Venn analysis between WE and WG shows that Amaricoccus, Micrococcales, Flavobacteriaceae, and Paracoccus were the dominant bacteria genera, while Acinetobacter, Demequina, and Rheinheimera were the dominant bacteria genera between YE and YG. Pathways such as the biosynthesis of secondary metabolites, microbial metabolism in different environments, and carbon metabolism were significantly more upregulated in WG than those in YG (p < 0.05). In addition, pathways such as sulfate, chloroplast, phototrophy, and the nitrogen metabolism were significantly different between the WE and YE samples. These findings suggest that the greenhouse mode, a typical heterotrophic bacterial model, contains bacterial flora consisting of Amaricoccus, Micrococcales, Flavobacteriaceae, and other bacteria, which is indicative of the biological sludge process. Conversely, the aquaponic mode, an autotrophic bacterial model, was characterized by Acinetobacter, Demequina, Rheinheimera, and other bacteria, signifying the autotrophic biological process. This research provides an extensive understanding of heterotrophic and autotrophic bacterial aquaculture systems.

2.
Carbohydr Polym ; 303: 120475, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657854

RESUMO

The flexible film is widely applied in the modern electronic industry, whilst it is still challenging to use biopolymer substrates (e.g., starch) to prepare flexible film well-performed in conductivity and fluorescence. In the study, a novel conductive, fluorescent, and flexible biopolymer film was prepared via a cost-effective method by fabricating the nitrogen-doped oxide-reduced graphene quantum dots (N-rGO-QDs) into the thermoplastic starch (TPS) substrate. TPS/N-rGO-QDs film with 10 wt% N-rGO-QDs showed the desirable lowest resistivity (0.082 Ω·m), acceptable light transmittance (60-80 %), and durable fluorescence intensity (9000 CPS). The results reveal a novel starch-based multifunctional film with satisfactory electrical and fluorescent performances, which is hypothesized potential to be applied in some frontier domains, like human wearable devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...