Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 65(4): 318-328, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36659097

RESUMO

There is a remarkable characteristic of photosynthesis in nature, that is, the energy transfer efficiency is close to 100%. Recently, due to the rapid progress made in the experimental techniques, quantum coherent effects have been experimentally demonstrated. Traditionally, the incoherent theories are capable of calculating the energy transfer efficiency, e.g., (generalized) Förster theory and modified Redfield theory (MRT). However, in order to describe the quantum coherent effects in photosynthesis, one has to exploit coherent theories, such as hierarchical equation of motion (HEOM), quantum path integral, coherent modified Redfield theory (CMRT), small-polaron quantum master equation, and general Bloch-Redfield theory in addition to the Redfield theory. Here, we summarize the main points of the above approaches, which might be beneficial to the quantum simulation of quantum dynamics of exciton energy transfer (EET) in natural photosynthesis, and shed light on the design of artificial light-harvesting devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...