Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Express ; 30(22): 41012-41027, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36299024

RESUMO

In this paper, we propose a 1-dimensional optomechanical lattice which possesses non-Hermitian property due to its nonreciprocal couplings. We calculated the energy spectrum under periodical boundary condition and open boundary condition, respectively. To investigate the transmission property of the system, we calculate the Green function of the system using non-Bloch band theory. By analyzing the Green function and the periodical boundary condition results, we studied the directional amplification of the system and found the frequency that supports the amplification. By adding probe laser on one site and detect the output of the same site, we found that optomechanically induced transparency (OMIT) can be achieved in our system. Different from the traditional OMIT spectrum, quantum interference due to a large number of modes can be observed in our system. When varying the nonreciprocal and other parameters of the system, the OMIT peak can be effectively modulated or even turned into optomechanically induced amplification. Our system is very promising to act as a one-way signal filter. Our model can also be extended to other non-Hermitian optical systems which may possess topological features and bipolar non-Hermitian skin effect.

2.
Opt Lett ; 47(15): 3944-3947, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913354

RESUMO

Whispering-gallery-mode (WGM) microcavities have shown significant applications in nanoparticle sensing for environmental monitoring and biological analysis. However, the enhancement of detection resolution often calls for active cavities or elaborate structural designs, leading to an increase of fabrication complexity and cost. Herein, heterodyne amplification is implemented in WGM microsensors based on backscattering detection mechanism. By interfering with an exotic reference laser, the reflecting light backscattered by perturbation targets can be strongly enlarged, yielding an easy-to-resolve and consequently sensitive microsensor. The dependence of detection laser frequency has also been characterized with the assistance of optothermal dynamics. We show that exploiting heterodyne interferometry boosts the detection of weak signals in microresonator systems and provides a fertile ground for optical microsensor development.


Assuntos
Nanopartículas
3.
Opt Lett ; 47(21): 5529-5532, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219261

RESUMO

Simultaneous ground-state cooling of multiple degenerate mechanical modes is a difficult issue in optomechanical systems, owing to the existence of the dark mode effect. Here we propose a universal and scalable method to break the dark mode effect of two degenerate mechanical modes by introducing cross-Kerr (CK) nonlinearity. At most, four stable steady states can be achieved in our scheme in the presence of the CK effect, unlike the bistable behavior of the standard optomechanical system. Under a constant input laser power, the effective detuning and mechanical resonant frequency can be modulated by the CK nonlinearity, resulting in an optimal CK coupling strength for cooling. Similarly, there will be an optimal input laser power for cooling when the CK coupling strength stays fixed. Our scheme can be extended to break the dark mode effect of multiple degenerate mechanical modes by introducing more than one CK effect. To fulfill the requirement of the simultaneous ground-state cooling of N multiple degenerate mechanical modes, N - 1 CK effects with different strengths are needed. Our proposal provides new, to the best of our knowledge. insights into dark mode control and might pave the way to manipulating multiple quantum states in a macroscopic system.

4.
Sci Bull (Beijing) ; 65(4): 318-328, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36659097

RESUMO

There is a remarkable characteristic of photosynthesis in nature, that is, the energy transfer efficiency is close to 100%. Recently, due to the rapid progress made in the experimental techniques, quantum coherent effects have been experimentally demonstrated. Traditionally, the incoherent theories are capable of calculating the energy transfer efficiency, e.g., (generalized) Förster theory and modified Redfield theory (MRT). However, in order to describe the quantum coherent effects in photosynthesis, one has to exploit coherent theories, such as hierarchical equation of motion (HEOM), quantum path integral, coherent modified Redfield theory (CMRT), small-polaron quantum master equation, and general Bloch-Redfield theory in addition to the Redfield theory. Here, we summarize the main points of the above approaches, which might be beneficial to the quantum simulation of quantum dynamics of exciton energy transfer (EET) in natural photosynthesis, and shed light on the design of artificial light-harvesting devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...