Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurol ; 24(1): 38, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262944

RESUMO

BACKGROUND: Contrast-induced encephalopathy (CIE) is a rare complication during or after angiography, usually transient and reversible. CIE diagnosis is challenging due to the absence of no formal diagnostic criteria. CIE can mimic stroke symptoms, including visual disturbances, seizures, confusion, coma, and focal neurological deficits. This case reports neurological deficit reversal in a CIE patient due to the embolization of an intracranial aneurysm, the second angiographic procedure in six days. CASE PRESENTATION: A 77-year-old woman was admitted to the hospital for headaches. The cerebral computed tomography (CT) scan indicated a subarachnoid hemorrhage. The first digital subtraction angiography (DSA) identified an aneurysm of 4 mm ∗ 3 mm in size in the M1 segment of the right middle cerebral artery (MCA). Then, embolization surgery was performed for the cerebral aneurysm, which was successful. However, the patient had post-operative headaches, slurred speech, epilepsy, limb weakness, and delirium post-procedure. The non-contrast cerebral CT indicated widespread edema in the right cerebral hemisphere. The patient was diagnosed with CIE and treated with symptomatic supportive therapy. Eventually, the patient's neurological deficits and cerebral edema improved significantly. CONCLUSIONS: The current case emphasized the importance of early diagnosis and symptomatic treatment of CIE. Thus, CIE should be the first consideration during the differential diagnosis of a patient having acute neurological impairment after repeated DSA.


Assuntos
Aneurisma Intracraniano , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Feminino , Humanos , Idoso , Angiografia Digital , Cefaleia
2.
Neuron ; 112(1): 155-173.e8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37944520

RESUMO

The hypocretin (Hcrt) (also known as orexin) neuropeptidic wakefulness-promoting system is implicated in the regulation of spatial memory, but its specific role and mechanisms remain poorly understood. In this study, we revealed the innervation of the medial entorhinal cortex (MEC) by Hcrt neurons in mice. Using the genetically encoded G-protein-coupled receptor activation-based Hcrt sensor, we observed a significant increase in Hcrt levels in the MEC during novel object-place exploration. We identified the function of Hcrt at presynaptic glutamatergic terminals, where it recruits fast-spiking parvalbumin-positive neurons and promotes gamma oscillations. Bidirectional manipulations of Hcrt neurons' projections from the lateral hypothalamus (LHHcrt) to MEC revealed the essential role of this pathway in regulating object-place memory encoding, but not recall, through the modulation of gamma oscillations. Our findings highlight the significance of the LHHcrt-MEC circuitry in supporting spatial memory and reveal a unique neural basis for the hypothalamic regulation of spatial memory.


Assuntos
Hipotálamo , Memória Espacial , Camundongos , Animais , Orexinas/metabolismo , Hipotálamo/metabolismo , Neurônios/fisiologia , Região Hipotalâmica Lateral/fisiologia
3.
Adv Mater ; 35(30): e2212149, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37078244

RESUMO

Liquid transportation is fundamentally important in microfluidics, water collection, biosensing, and printing, and has attracted enormous research interest in the past decades. However, despite substantial progress, it remains a big challenge to achieve the controlled transport of viscous liquids (>100 mPa s) commonly existing in daily life and the chemical industry. Inspired by the gastrointestinal peristalsis of mammalians that can efficiently transport viscous chyme (viscosity up to 2000 mPa s) by the synergistic combination of contraction driving force and lubrication, here, the design and construction of double-layered tubular hydrogel actuators for directional transport of highly viscous liquids ranging from ≈1000 mPa s to >80 000 mPa s under the control of an applied 808 nm laser, which is attributed to the cooperation of outer layer contraction and water film lubrication of the inner layer, is reported. It is demonstrated that the actuators are capable of transporting polymerizing liquid whose viscosity significantly increases to ≈11 182 mPa s in 2 h. This work paves a new avenue toward directional transport of highly viscous liquids, which not only expands the research scope of liquid transportation, but will spur the design of new liquid actuators with potential applications in viscous-liquid-based microfluidics, artificial blood vessels, and soft robots.

4.
iScience ; 25(5): 104180, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494235

RESUMO

In Drosophila melanogaster, olfactory projection neurons (PNs) convey odor information from the antenna lobe to higher brain regions. Recent transcriptomic studies reveal a large diversity of transcription factors, cell-surface molecules, neurotransmitter-coding, and neuropeptide-coding genes in PNs; however, their structural diversity remains unknown. Herein, we achieved a volumetric reconstruction of 89 PN boutons under Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and quantitatively analyzed the internal presynaptic active zones (PAZs) and dense-core vesicles (DCVs). The ultrastructure-based cluster analysis reveals three morphological distinct bouton subtypes: complex boutons, unilobed boutons, and simple boutons. The complex boutons contain the most PAZs and DCVs, which suggests that they are of the highest capability of releasing neurotransmitters and neuromodulators. By labeling a subset of boutons under FIB-SEM, we found that DCVs are preferentially distributed in certain GH146-positive subtypes. Our study demonstrates that PN boutons display distinct morphology, which may determine their capacity of releasing neurotransmitters and neuromodulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...