Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(6): e0269915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35763534

RESUMO

Forsythia suspensa is a traditional Chinese herb. Its numerous metabolites have important roles, as they possessed a wide range of biological activities. This study explored the accumulations of F. suspensa metabolites by performing widely targeted metabolomic analysis. The metabolites were studied at four stages of fruit development. Metabolites in the fruits and leaves of F. suspensa during fruit development included phenolic acids, flavonoids, lipids, lignans and coumarins, amino acids and their derivatives, terpenes, organic acids, nucleotides and their derivatives, alkaloids, quinones, steroids, and tannins. Fourteen Forsythia related metabolites were detected. Their contents varied among the developmental stages. Statistically significant correlations were found between the levels of forsythoside B and 11-methyl-forsythide, and forsythialan B and phillygenin, in both leaves and fruits. According to the correlation analysis between metabolites, Forsythia related metabolites were divided into two classes and five subclasses. In total, 33 compounds presented significant correlations in both fruits and leaves, which indicated the potential relationship in the synthesis of Forsythia related metabolites. Forsythialan B and phillygenin were both negatively correlated with L-valine, while Z-6,7-epoxyligustilid was positively correlated with both compounds. The quality control compounds forsythiaside A and phillyrin were positively and negatively correlated with uracil, respectively. These metabolomics results may facilitate the biosynthesis of Forsythia related metabolites.


Assuntos
Forsythia , Forsythia/química , Frutas/química , Metaboloma , Folhas de Planta/química , Espectrometria de Massas em Tandem
2.
Arch Microbiol ; 204(1): 15, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34894277

RESUMO

Plant rhizosphere bacterial communities are central to plant growth and stress tolerance, which differ across cultivars and external environments. The goal of this study was to assess the comprehensive effects of salt stress and peanut cultivars on rhizosphere bacterial community diversity. In this study, we investigated the effects of salt stress on peanut morphology and pod yield and the associated rhizosphere bacterial diversity using statistical analysis and 16S rRNA gene sequencing, respectively. Statistical analysis exhibited that salt stress indeed affected peanut growth and pod yield, and various peanut cultivars showed divergences. Taxonomic analysis showed that the bacterial community predominantly consisted of phyla Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, and Cyanobacteria in peanut rhizosphere soils. Among these bacteria, numbers of beneficial bacteria Cyanobacteria and Proteobacteria increased, especially in the salt-resistant cultivars, while that of Acidobacteria decreased after salt treatment. Nitrogen-fixing bacterium Rhizobium closely related to peanut nodulation was significantly improved in rhizosphere soils of salt-resistant cultivars after salt treatment. Metabolic function prediction showed that the percentages of reads categorized to signaling transduction and inorganic ion transport and metabolism were higher in the salt-treated soils, which may be conducive to peanut survival and salt tolerance to some extent. The study is, therefore, crucially important to develop the foundation for improving the salt tolerance of various peanut cultivars via modifying the soil bacterial community.


Assuntos
Cianobactérias , Rizosfera , Arachis , Cianobactérias/genética , Filogenia , Raízes de Plantas , RNA Ribossômico 16S/genética , Estresse Salino , Microbiologia do Solo
3.
Sci Rep ; 10(1): 16207, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004940

RESUMO

Perilla frutescens (L.) is an important medicinal and edible plant in China with nutritional and medical uses. The extract from leaves of Perilla frutescens contains flavonoids and volatile oils, which are mainly used in traditional Chinese medicine. In this study, we analyzed the transcriptomic and metabolomic data of the leaves of two Perilla frutescens varieties: JIZI 1 and JIZI 2. A total of 9277 differentially expressed genes and 223 flavonoid metabolites were identified in these varieties. Chrysoeriol, apigenin, malvidin, cyanidin, kaempferol, and their derivatives were abundant in the leaves of Perilla frutescens, which were more than 70% of total flavonoid contents. A total of 77 unigenes encoding 15 enzymes were identified as candidate genes involved in flavonoid biosynthesis in the leaves of Perilla frutescens. High expression of the CHS gene enhances the accumulation of flavonoids in the leaves of Perilla frutescens. Our results provide valuable information on the flavonoid metabolites and candidate genes involved in the flavonoid biosynthesis pathways in the leaves of Perilla frutescens.


Assuntos
Flavonoides/biossíntese , Redes e Vias Metabólicas , Metaboloma , Perilla frutescens/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Biologia Computacional , Flavonoides/genética , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Perilla frutescens/genética , Perilla frutescens/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética
4.
BMC Plant Biol ; 20(1): 349, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703155

RESUMO

BACKGROUND: The objectives of this study were to reveal the anthocyanin biosynthesis metabolic pathway in white and purple flowers of Salvia miltiorrhiza using metabolomics and transcriptomics, to identify different anthocyanin metabolites, and to analyze the differentially expressed genes involved in anthocyanin biosynthesis. RESULTS: We analyzed the metabolomics and transcriptomics data of S. miltiorrhiza flowers. A total of 1994 differentially expressed genes and 84 flavonoid metabolites were identified between the white and purple flowers of S. miltiorrhiza. Integrated analysis of transcriptomics and metabolomics showed that cyanidin 3,5-O-diglucoside, malvidin 3,5-diglucoside, and cyanidin 3-O-galactoside were mainly responsible for the purple flower color of S. miltiorrhiza. A total of 100 unigenes encoding 10 enzymes were identified as candidate genes involved in anthocyanin biosynthesis in S. miltiorrhiza flowers. Low expression of the ANS gene decreased the anthocyanin content but enhanced the accumulation of flavonoids in S. miltiorrhiza flowers. CONCLUSIONS: Our results provide valuable information on the anthocyanin metabolites and the candidate genes involved in the anthocyanin biosynthesis pathways in S. miltiorrhiza.


Assuntos
Antocianinas/biossíntese , Antocianinas/genética , Flores/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Flavonoides/genética , Flavonoides/metabolismo , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Pigmentação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...