Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 61(16): 4891-4899, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255974

RESUMO

Based on the microscale 3D point cloud projection with a digital micromirror device (DMD) and a microlens array (MLA) developed recently, we explore the capabilities of this specific type of 3D projection in 3D lithography with femtosecond light in this study. Unlike 3D point cloud projection with UV continuous light demonstrated before, high accuracy positioning between the DMD and the MLA is required to have rays simultaneously arrive at the designed voxel positions to induce two-photon absorption with femtosecond light. Because of this additional requirement, a new positioning method through direct microscope inspection of the relative positions of the DMD and the MLA is developed in this study. Because of the usage of a rectangular MLA, around four rays can arrive at each projecting voxel at the same time. Thus, to the best of our knowledge, a new algorithm for determining the pixel map on the DMD to the 3D point cloud projection with a femtosecond laser is also developed. It is observed that a very long exposure time is required to generate 3D patterns with the new 3D projection scheme because of the very limited number of rays used for projecting each voxel with the new algorithm. It is also found that 3D structures with desired shapes should be projected far away from the MLA (∼15f to 30f, with f being the focal distance of the MLA) in the 3D lithography with this femtosecond 3D point cloud projection. For patterns projected closer than 10f, shapes are distorted because of unwanted voxels cured with the 3D projection technique using a DMD and MLA.

2.
Appl Opt ; 59(27): 8071-8076, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32976384

RESUMO

A methodology of 3D photolithography through light field projections with a microlens array (MLA) is proposed and demonstrated. With the MLA, light from a spatial light modulator (SLM) can be delivered to arbitrary positions, i.e., voxels, in a 3D space with a focusing scheme we developed. A mapping function between the voxel locations and the SLM pixel locations can be one-to-one determined by ray tracing. Based on a correct mapping function, computer-designed 3D virtual objects can be reconstructed in a 3D space through a SLM and a MLA. The projected 3D virtual object can then be optically compressed and delivered to a photoresist layer for 3D photolithography. With appropriate near-UV light, 3D microstructures can be constructed at different depths inside the photoresist layer. This 3D photolithography method can be useful in high-speed 3D patterning at arbitrary positions. We expect high-precision 3D patterning can also be achieved when a femtosecond light source and the associated multi-photon curing process is adopted in the proposed light field 3D projection/photolithography scheme. Multi-photon polymerization can prevent the unwilling patterning of regions along the optical path before arriving to the designed focal voxels as observed in our single photon demonstrations.

3.
J Biomed Opt ; 22(5): 56002, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28467537

RESUMO

A numerical analysis capable of describing the early stage of a thermal microcavitation process in a water-rich biotissue without avalanche breakdown was developed. The analysis successfully reproduced the laser-induced heating, vapor bubble formation, bubble expansion, and shockwave propagation inside a water-rich biotissue during a thermal microcavitation process. Based on the analysis, it was determined that the evolution of the temperature, pressure, and laser-induced shockwave is dependent on the incident laser energy and laser pulse width. On the other hand, the early stage dynamics of the microcavitation process showed little dependence on the elastic modulus of the biotissue for the laser and tissue conditions studied.


Assuntos
Lasers , Temperatura , Água/química , Pressão
4.
Opt Lett ; 41(8): 1793-6, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27082347

RESUMO

A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

5.
Opt Lett ; 39(3): 582-5, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487871

RESUMO

Light scattering from nonspherically symmetric pure dielectric structures is examined. From the finite element full-wave analysis, it is found that teardrop-shaped scatterers can focus visible light to a ∼10 nm spot with an intensity enhancement ∼10(5) when the incident light is radially polarized.

6.
Talanta ; 73(3): 567-76, 2007 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19073072

RESUMO

Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50Jcm(-2). Characterization of particles and correlation with inductively coupled plasma mass spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of approximately 50 and approximately 12 for fs versus ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the (66)Zn transient signal by a factor of 10 compared to nanosecond laser pulses.

7.
Talanta ; 73(3): 577-82, 2007 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19073073

RESUMO

Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50Jcm(-2). Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloy samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns- and fs-laser ablation than for metal alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...