Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 884: 173394, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32730833

RESUMO

Angiogenesis is essential for bone formation during skeletal development. HIF-1α and the HIF-responsive gene VEGF (vascular endothelial growth factor) are reported to be a key mechanism for coupling osteogenesis and angiogenesis. Salidroside (SAL), a major biologically active compound of Rhodiola rosea L., possesses diverse pharmacological effects. However, whether SAL can protect against bone loss via the HIF-1α/VEGF pathway, specifically by inducing angiogenesis-osteogenesis coupling in vivo, remains unknown. Therefore, in the present study, we employed primary human umbilical vein endothelial cells (HUVECs) and the permanent EA.hy926 human endothelial cell line to determine the cellular and molecular effects of SAL on vascular endothelial cells and the HIF-1α-VEGF signalling pathway in the coupling of angiogenesis-osteogenesis. The in vitro study revealed that the HUVECs and EA.hy926 cells treated with conditioned medium from osteoblast cells (MG-63 cells) treated with SAL or treated directly with SAL showed enhanced proliferation, migration and capillary structure formation. However, supplementation with an anti-VEGF antibody during the treatment of endothelial cells (ECs) significantly reversed the pro-angiogenic effect of SAL. Moreover, SAL upregulated HIF-1α expression and increased its transcriptional activity, consequently upregulating VEGF expression at the mRNA and protein levels. In addition, our in vivo analysis demonstrated that SAL can stimulate endothelial sprouting from metatarsal bones. Thus, our mechanistic study demonstrated that the pro-angiogenic effects of SAL involve HIF-1α-VEGF signalling by coordinating the coupling of angiogenesis-osteogenesis in the bone environment. Therefore, we have discovered an ideal molecule that simultaneously enhances angiogenesis and osteogenesis and thereby accelerates bone healing.


Assuntos
Glucosídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ossos do Metatarso/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Comunicação Parácrina , Fenóis/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Microambiente Celular , Meios de Cultivo Condicionados/metabolismo , Feminino , Consolidação da Fratura/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos Endogâmicos BALB C , Osteoblastos/metabolismo , Gravidez , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
2.
Am J Chin Med ; 48(3): 651-678, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32349518

RESUMO

Cinobufagin is a Na+/K+-ATPase (NKA) inhibitor with excellent anticancer effects to prolong the survival of patients. The purpose of the present study was to clarify the underlying mechanism of the anticancer effects of cinobufagin using overexpression or inhibition of aurora kinase A (AURKA) signaling. First, high expression of Na+/K+-ATPase alpha 1 subunit (ATP1A1) and AURAK resulted in increased malignant transformation in hepatocellular carcinoma (HCC) patients using the cancer genome atlas (TCGA) data and tissue samples. After treatment with cinobufagin, we successfully screened 202, 249, and 335 changing expression proteins in Huh-7 cells under normal, overexpression, and inhibition of AURKA using tandem mass tags (TMT)-labeled quantitative proteomics coupled to 2D liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis revealed that these molecules were closely associated with chromosome segregation, DNA damage, and regulation of translation processes. We further confirmed that cinobufagin induced DNA damage and chromosome segregation disorders and suppresses translational processing in oncogenes by decreasing the expression of AURKA, mechanistic target of rapamycin kinase (mTOR), p-mTOR, p-extracellular regulated protein kinases (ERK), eukaryotic translation initiation factor 4E (eIF4E), and p-eIF4E, while increasing the expression of p-eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) (S65, T37, T46, T45) and increasing the interaction between eIF4 and 4E-BP1. Our results suggested that cinobufagin performed an antitumor effects in liver cancer cells by inhibiting the AURKA-mTOR-eIF4E axis.


Assuntos
Antineoplásicos Fitogênicos , Aurora Quinase A/metabolismo , Bufanolídeos/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Segregação de Cromossomos/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Oncogenes/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Tumorais Cultivadas
3.
Oncol Lett ; 18(6): 5930-5940, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31788067

RESUMO

Histone H3K27 demethylase Jumonji domain-containing protein 3 (JMJD3) is involved in somatic cell differentiation and tumor progression; however, the underlying mechanisms of JMJD3 in cancer progression are yet to be fully explored. To improve understanding regarding the function of JMJD3 in brain tumor cells, the present study investigated the effects of JMJD3 on the epithelial-mesenchymal transition (EMT) and migration in glioma cells, and the underlying mechanisms involving the C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) axis. Immunohistochemical staining of a tissue microarray of glioma samples confirmed that JMJD3 overexpression could stratify highly metastatic glioma. The overexpression of JMJD3 induced a spindle-shaped morphology, promoted N-cadherin expression, inhibited E-cadherin expression and enhanced the migration ability of U-251MG and U-87MG American Type Culture Collection cells. The expression of E-cadherin and N-cadherin were assessed by western blotting and reverse transcription-quantitative polymerase chain reaction, and cell migration was evaluated using a Transwell migration assay and wound-healing. The overexpression of JMJD3 upregulated CXCL12 expression in a demethylase activity-dependent manner as ChIP assays revealed a decrease in H3K27 trimethylation at the CXCL12 promoter following overexpression of JMJD3 in U-87MG ATCC cells. Accordingly, CXCL12 overexpression was sufficient to rescue the suppressive effects of JMJD3 inhibition on the EMT and migration in glioma cells. In addition, CXCR4 expression was not regulated by JMJD3, but the interruption of CXCR4 caused by the CXCR4 inhibitor AMD3100 abolished the promotional effect of JMJD3 on EMT and migration in glioma cells. Collectively, these results suggested that JMJD3 promoted EMT and migration in glioma cells via the CXCL12/CXCR4 axis. The present study described a novel epigenetic mechanism regulating tumor cell EMT and migration, and provided a novel direction for glioma diagnosis and treatment.

4.
Neurochem Res ; 41(10): 2810-2818, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27386875

RESUMO

Tacrolimus (FK506), an immunophilin ligand, has been widely shown to be neuroprotective in a posttraumatic period. The nuclear factor of activated T cells (NFATc1) pathway plays an important role in regenerating neurological function following traumatic brain injury (TBI), but the precise mechanism underlying FK506-induced repair of neurological functions remains unclear. In the present study, a total of 210 SD rats were enrolled and randomly divided into sham group, TBI group and FK506 group. The rats in the TBI and FK506 groups were inflicted with moderate TBI left lateral fluid percussion impact. A modified neurological severity score (mNSS) system was used to evaluate the severity of effects on nerve function. mNSS levels were significantly lower in the FK506 group than in the TBI group. The zaccumulation of cerebral water content was lower, cerebral Aquaporin 4 (AQP4) mRNA level was lower, the number of growth-associated protein-43 (GAP-43)-positive cells was higher, and the distribution of vesicles containing excitatory neurotransmitters was altered in the injured cortex in the FK506 group. Moreover, the cortical mRNA and serum protein expression levels of interleukin-2 (IL-2) and interferon-γ (IFN-γ) were decreased in FK506 group, especially at 6 h and at 1 day after TBI. At days 1-28 after TBI, the expression of cleaved-caspase 3, which indicates apoptosis, was lower in the FK506 group than in the TBI group. Mechanistically, FK506 significantly down-regulated the mRNA and protein levels of calcium-regulated phosphatase (calcineurin, CaN) and inhibited the activation of NFATc1. These results demonstrate that FK506 relieved inflammatory responses by regulating the NFATc1 signaling pathway and promoting the synaptic reconstruction of neurons and glial cells by regulating cell apoptosis, thereby facilitated improvements in neurological function.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Fenômenos Fisiológicos do Sistema Nervoso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tacrolimo/farmacologia , Animais , Lesões Encefálicas Traumáticas/metabolismo , Calcineurina/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Interferon gama/metabolismo , Masculino , Fatores de Transcrição NFATC/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...