Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Mol Neurobiol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837104

RESUMO

Nociceptive sensitization is accompanied by the upregulation of glycolysis in the central nervous system in neuropathic pain. Growing evidence has demonstrated glycolysis and angiogenesis to be related to the inflammatory processes. This study investigated whether fumagillin inhibits neuropathic pain by regulating glycolysis and angiogenesis. Fumagillin was administered through an intrathecal catheter implanted in rats with chronic constriction injury (CCI) of the sciatic nerve. Nociceptive, behavioral, and immunohistochemical analyses were performed to evaluate the effects of the inhibition of spinal glycolysis-related enzymes and angiogenic factors on CCI-induced neuropathic pain. Fumagillin reduced CCI-induced thermal hyperalgesia and mechanical allodynia from postoperative days (POD) 7 to 14. The expression of angiogenic factors, vascular endothelial growth factor (VEGF) and angiopoietin 2 (ANG2), increased in the ipsilateral lumbar spinal cord dorsal horn (SCDH) following CCI. The glycolysis-related enzymes, pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) significantly increased in the ipsilateral lumbar SCDH following CCI on POD 7 and 14 compared to those in the control rats. Double immunofluorescence staining indicated that VEGF and PKM2 were predominantly expressed in the astrocytes, whereas ANG2 and LDHA were predominantly expressed in the neurons. Intrathecal infusion of fumagillin significantly reduced the expression of angiogenic factors and glycolytic enzymes upregulated by CCI. The expression of hypoxia-inducible factor-1α (HIF-1α), a crucial transcription factor that regulates angiogenesis and glycolysis, was also upregulated after CCI and inhibited by fumagillin. We concluded that intrathecal fumagillin may reduce the expression of ANG2 and LDHA in neurons and VEGF and PKM2 in the astrocytes of the SCDH, further attenuating spinal angiogenesis in neuropathy-induced nociceptive sensitization. Hence, fumagillin may play a role in the inhibition of peripheral neuropathy-induced neuropathic pain by modulating glycolysis and angiogenesis.

2.
Oncol Lett ; 28(2): 378, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38939621

RESUMO

Glioblastoma multiforme (GBM) is an aggressive brain cancer that occurs more frequently than other brain tumors. The present study aimed to reveal a novel mechanism of temozolomide resistance in GBM using bioinformatics and wet lab analyses, including meta-Z analysis, Kaplan-Meier survival analysis, protein-protein interaction (PPI) network establishment, cluster analysis of co-expressed gene networks, and hierarchical clustering of upregulated and downregulated genes. Next-generation sequencing and quantitative PCR analyses revealed downregulated [tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 1 (TIE1), calcium voltage-gated channel auxiliary subunit α2Δ1 (CACNA2D1), calpain 6 (CAPN6) and a disintegrin and metalloproteinase with thrombospondin motifs 6 (ADAMTS6)] and upregulated [serum amyloid (SA)A1, SAA2, growth differentiation factor 15 (GDF15) and ubiquitin specific peptidase 26 (USP26)] genes. Different statistical models were developed for these genes using the Z-score for P-value conversion, and Kaplan-Meier plots were constructed using several patient cohorts with brain tumors. The highest number of nodes was observed in the PPI network was for ADAMTS6 and TIE1. The PPI network model for all genes contained 35 nodes and 241 edges. Immunohistochemical staining was performed using isocitrate dehydrogenase (IDH)-wild-type or IDH-mutant GBM samples from patients and a significant upregulation of TIE1 (P<0.001) and CAPN6 (P<0.05) protein expression was demonstrated in IDH-mutant GBM in comparison with IDH-wild-type GBM. Structural analysis revealed an IDH-mutant model demonstrating the mutant residues (R132, R140 and R172). The findings of the present study will help the future development of novel biomarkers and therapeutics for brain tumors.

3.
Environ Toxicol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884142

RESUMO

Environmental antineoplastics such as sorafenib may pose a risk to humans through water recycling, and the increased risk of cardiotoxicity is a clinical issue in sorafenib users. Thus, developing strategies to prevent sorafenib cardiotoxicity is an urgent work. Empagliflozin, as a sodium-glucose co-transporter-2 (SGLT2) inhibitor for type 2 diabetes control, has been approved for heart failure therapy. Still, its cardioprotective effect in the experimental model of sorafenib cardiotoxicity has not yet been reported. Real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to study the effect of sorafenib exposure on cardiac SGLT2 expression. The impact of empagliflozin on cell viability was investigated in the sorafenib-treated cardiomyocytes using Alamar blue assay. Immunoblot analysis was employed to delineate the effect of sorafenib and empagliflozin on ferroptosis/proinflammatory signaling in cardiomyocytes. Ferroptosis/DNA damage/fibrosis/inflammation of myocardial tissues was studied in mice with a 28-day sorafenib ± empagliflozin treatment using histological analyses. Sorafenib exposure significantly promoted SGLT2 upregulation in cardiomyocytes and mouse hearts. Empagliflozin treatment significantly attenuated the sorafenib-induced cytotoxicity/DNA damage/fibrosis in cardiomyocytes and mouse hearts. Moreover, GPX4/xCT-dependent ferroptosis as an inducer for releasing high mobility group box 1 (HMGB1) was also blocked by empagliflozin administration in the sorafenib-treated cardiomyocytes and myocardial tissues. Furthermore, empagliflozin treatment significantly inhibited the sorafenib-promoted NFκB/HMGB1 axis in cardiomyocytes and myocardial tissues, and sorafenib-stimulated proinflammatory signaling (TNF-α/IL-1ß/IL-6) was repressed by empagliflozin administration. Finally, empagliflozin treatment significantly attenuated the sorafenib-promoted macrophage recruitments in mouse hearts. In conclusion, empagliflozin may act as a cardioprotective agent for humans under sorafenib exposure by modulating ferroptosis/DNA damage/fibrosis/inflammation. However, further clinical evidence is required to support this preclinical finding.

5.
Biology (Basel) ; 13(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927264

RESUMO

Padina minor is a seaweed rich in polysaccharides often used in food, feed, fertilizers, and antibacterial drugs. This study is the first to evaluate the effect of feeding zebrafish with Padina minor extract on preventing and treating C. albicans infections. This study evaluated the growth, survival, and disease resistance effects of P. minor extract on zebrafish. The fish were divided into four groups: three groups treated with 1%, 5%, or 10% P. minor extract and one untreated group (c, control). Subsequently, we analyzed how the extract affected the immune function of zebrafish infected with C. albicans. Based on the lethal concentration (LC50) calculated in the first stage, 1% was used as the effective therapeutic concentration. The results showed that the growth rate of the 1% feed group was the best, and no significant difference in survival rates between the four groups was observed. Feeding with 1% P. minor extract downregulated the expression of key inflammatory genes like tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and IL-10, effectively preventing and treating C. albicans infections in zebrafish. This study is a preliminary evaluation of the therapeutic efficacy of P. minor extracts against C. albicans.

6.
Cryobiology ; 116: 104930, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38871207

RESUMO

Glycans are carbohydrates present in every organism that bind to specific molecules such as lectins, a diverse group of proteins. Glycans are vital to cell proliferation and protein trafficking. In addition, embryogenesis is a critical phase in the development of marine organisms. This study investigated the effects of chilling and cryoprotective agents (CPAs) on glycans in the embryos of Stenopus hispidus. The glycan profiles of embryos of S. hispidus at the heartbeat stage were analyzed using lectin arrays. The results of analyses revealed that mannose was the most abundant glycan in the S. hispidus embryos; mannose is crucial to cell proliferation, providing the energy required for embryonic growth. Additionally, the results reveled that chilling altered the content of several glycans, including fucose and Gla-GlcNAc. Chilling may promote monosaccharide accumulation, facilitating osmotic regulation of cells and signal molecules to aid S. hispidus embryos in adapting to cold conditions. Changes were also observed in the lectins NPA, orysata, PALa, ASA, discoidin II, discoidin I, UDA, PA-IIL, and PHA-P after the samples were treated with different CPAs. DMSO may minimize cell damage during exposure to chilling by preserving cell structures, membrane properties, and functions. The present study is the first to investigate the profiles and functions of glycans in shrimp embryos subjected to low-temperature injuries. This study enhances the understanding of cell reproduction during embryogenesis and provides valuable information for the study of glycans in embryos.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38805142

RESUMO

Marine antimicrobial peptides have been demonstrated in numerous studies to possess anti-cancer properties. This research investigation aimed to explore the fundamental molecular mechanisms underlying the antitumor activity of Tilapia piscidin 4 (TP4), an antimicrobial peptide, in human bladder cancer. TP4 exhibited a remarkable inhibitory effect on the proliferation of bladder cancer cells through cell cycle arrest at the G2/M phase. Additionally, TP4 upregulated the expression of cleaved caspase-3, caspase-9, and PARP, leading to the activation of apoptotic pathways in bladder cancer cells. TP4 exhibit a marked rise in mitochondria reactive oxygen species, leading to the subsequent loss of potential for the mitochondrial membrane. Furthermore, the inhibition of mitochondrial oxidative phosphorylation resulted in a decrease in downstream ATP production. Meanwhile, TP4-treated bladder cancer cells showed an increase in Bax and ERK but a decrease in SIRT1, PGC-1α, and Bcl2. ERK activation, SIRT1/PGC-1α-axis, and TP4-induced apoptosis were all significantly reversed by the ERK inhibitor SCH772984. Finally, the inhibitory effect of TP4 on tumor growth has been confirmed in a zebrafish bladder cancer xenotransplantation model. These findings suggest that TP4 may be a potential agents for human bladder cancer through apoptosis induction, ERK activation, and the promotion of SIRT1-mediated signaling pathways.

8.
Nutrients ; 16(10)2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794708

RESUMO

As women age, oocytes are susceptible to a myriad of dysfunctions, including mitochondrial dysfunction, impaired DNA repair mechanisms, epigenetic alterations, and metabolic disturbances, culminating in reduced fertility rates among older individuals. Ferredoxin (FDX) represents a highly conserved iron-sulfur (Fe-S) protein essential for electron transport across multiple metabolic pathways. Mammalian mitochondria house two distinct ferredoxins, FDX1 and FDX2, which share structural similarities and yet perform unique functions. In our investigation into the regulatory mechanisms governing ovarian aging, we employed a comprehensive multi-omics analysis approach, integrating spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsy data. Previous studies have highlighted intricate interactions involving excessive lipid peroxide accumulation, redox-induced metal ion buildup, and alterations in cellular energy metabolism observed in aging cells. Through a multi-omics analysis, we observed a notable decline in the expression of the critical gene FDX1 as ovarian age progressed. This observation prompted speculation regarding FDX1's potential as a promising biomarker for ovarian aging. Following this, we initiated a clinical trial involving 70 patients with aging ovaries. These patients were administered oral nutritional supplements consisting of DHEA, ubiquinol CoQ10, and Cleo-20 T3 for a period of two months to evaluate alterations in energy metabolism regulated by FDX1. Our results demonstrated a significant elevation in FDX1 levels among participants receiving nutritional supplementation. We hypothesize that these nutrients potentiate mitochondrial tricarboxylic acid cycle (TCA) activity or electron transport chain (ETC) efficiency, thereby augmenting FDX1 expression, an essential electron carrier in metabolic pathways, while concurrently mitigating lipid peroxide accumulation and cellular apoptosis. In summary, our findings underscore the potential of nutritional intervention to enhance in vitro fertilization outcomes in senescent cells by bolstering electron transport proteins, thus optimizing energy metabolism and improving oocyte quality in aging women.


Assuntos
Envelhecimento , Suplementos Nutricionais , Ferredoxinas , Mitocôndrias , Ovário , Ubiquinona , Feminino , Humanos , Ovário/metabolismo , Ferredoxinas/metabolismo , Mitocôndrias/metabolismo , Adulto , Ubiquinona/análogos & derivados , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia , Redes e Vias Metabólicas , Metabolismo Energético , Pessoa de Meia-Idade
9.
Eur J Pharmacol ; 976: 176695, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38821161

RESUMO

Lipopolysaccharide (LPS) triggers an inflammatory response, causing impairment of cardiomyocyte Ca2+ and Na + regulation. This study aimed to determine whether piscidin-1 (PCD-1), an antimicrobial peptide, improves intracellular Ca2+ and Na + regulation in LPS-challenged atrial cardiomyocytes. Rabbit atrial cardiomyocytes were enzymatically isolated from the left atria. Patch-clamp ionic current recording, intracellular Ca2+ monitoring using Fluo-3, and detection of cytosolic reactive oxygen species production were conducted in control, LPS-challenged, and LPS + PCD-1-treated atrial cardiomyocytes. LPS-challenged cardiomyocytes showed shortened durations of action potential at their 50% and 90% repolarizations, which was reversed by PCD-1 treatment. LPS-challenged cardiomyocytes showed decreased L-type Ca2+ channel currents and larger Na+/Ca2+ exchange currents compared to controls. While LPS did not affect the sodium current, an enhanced late sodium current with increased cytosolic Na+ levels was observed in LPS-challenged cardiomyocytes. These LPS-induced alterations in the ionic current were ameliorated by PCD-1 treatment. LPS-challenged cardiomyocytes displayed lowered Ca2+ transient amplitudes and decreased Ca2+ stores and greater Ca2+ leakage in the sarcoplasmic reticulum compared to the control. Exposure to PCD-1 attenuated LPS-induced alterations in Ca2+ regulation. The elevated reactive oxygen species levels observed in LPS-challenged myocytes were suppressed after PCD-1 treatment. The protein levels of NF-κB and IL-6 increased following LPS treatment. Decreased sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a protein levels were observed in LPS-challenged cardiomyocytes. PCD-1 modulates LPS-induced alterations in inflammatory and Ca2+ regulatory protein levels. Our results suggest that PCD-1 modulates LPS-induced alterations in intracellular Ca2+ and Na + homeostasis, reactive oxygen species production, and the NF-κB inflammatory pathway in atrial cardiomyocytes.


Assuntos
Cálcio , Átrios do Coração , Lipopolissacarídeos , Miócitos Cardíacos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sódio , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Lipopolissacarídeos/farmacologia , Coelhos , Cálcio/metabolismo , Sódio/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Átrios do Coração/citologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Masculino , Potenciais de Ação/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos
10.
RSC Adv ; 14(24): 17195-17201, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38808247

RESUMO

The chemical screening of an octocoral identifed as Junceella fragilis has led to the isolation of five chlorinated briarane-type diterpenoids, including three known metabolites, gemmacolide X (1), frajunolide I (2), and fragilide F (3), along with two new analogs, 12α-acetoxyfragilide F (4) and 12α-acetoxyjunceellin (5). Single-crystal X-ray diffraction analysis was carried out to determine the absolute configurations of 1 and 2, while the structures of new compounds 4 and 5 were ascertained with 2D NMR experiments. Briaranes 1 and 3-5 were active in enhancing alkaline phosphatase (ALP) activity.

11.
Free Radic Biol Med ; 220: 28-42, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679300

RESUMO

Cancer of the head and neck encompasses a wide range of cancers, including oral and oropharyngeal cancers. Oral cancer is often diagnosed at advanced stages and has a dismal prognosis. Piscidin-1, a marine antimicrobial peptide (AMP) containing approximately 22 amino acids, also exhibits significant anticancer properties. We investigated the possible anti-oral cancer effects of piscidin-1 and clarified the mechanisms underlying these effects. We treated the oral squamous cell carcinoma cell lines OC2 and SCC4 with piscidin-1. Cell viability and the expression of different hallmark apoptotic molecules, including reactive oxygen species (ROS), were tested using the appropriate MTT assay, flow cytometry and western blotting assays, and human umbilical vein endothelial cell (HUVEC) wound healing, migration, and tube formation (angiogenesis) assays. Piscidin-1 increases cleaved caspase 3 levels to induce apoptosis. Piscidin-1 also increases ROS levels and intensifies oxidative stress in the endoplasmic reticulum and mitochondria, causing mitochondrial dysfunction. Additionally, it decreases the oxygen consumption rates and activity of mitochondrial complexes I-V. As expected, the antioxidants MitoTEMPOL and N-acetylcysteine reduce piscidin-1-induced ROS generation and intracellular calcium accumulation. Piscidin-1 also inhibits matrix metalloproteinase (MMP)-2/-9 expression in HUVECs, affecting migration and tube formation angiogenesis. We demonstrated that piscidin-1 can promote apoptosis via both intrinsic and extrinsic apoptotic pathways and findings indicate that piscidin-1 has anti-proliferative and anti-angiogenic properties in oral cancer treatment. Our study on piscidin-1 thus provides a basis for future translational anti-oral cancer drug research and a new theoretical approach for anti-oral cancer clinical research.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Apoptose , Carcinoma de Células Escamosas , Proteínas de Peixes , Células Endoteliais da Veia Umbilical Humana , Neoplasias Bucais , Neovascularização Patológica , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Proteínas de Peixes/farmacologia , Proteínas de Peixes/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Animais , Angiogênese
12.
Neuroscience ; 547: 98-107, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657727

RESUMO

OBJECTIVE: Postoperative pain remains one of the most common complaints after surgery, and appropriate treatments are limited. METHODS: We therefore investigated the effect of the anti-nociceptive properties of magnesium sulfate (MgSO4), an N-methyl-D-aspartate (NMDA) receptor antagonist, on incision-induced postoperative pain and peripheral and central nervous system inflammation. RESULTS: We found that local MgSO4 administration dose-dependently increases paw withdrawal latency, indicating reduced peripheral postoperative pain. Furthermore, MgSO4 inhibited the expression of interleukin-1ß (IL-1ß) and inducible nitric oxide synthase (iNOS) and phosphorylation of the NMDA receptor NR1 subunit in injured paw tissue and significantly attenuated microglial and astrocytic activation in the ipsilateral lumbar spinal cord dorsal horn. CONCLUSION: Locally administered MgSO4 has potential for development as an adjunctive therapy for preventing central nociceptive sensitization.


Assuntos
Inflamação , Sulfato de Magnésio , Nociceptividade , Dor Pós-Operatória , Ratos Sprague-Dawley , Animais , Sulfato de Magnésio/farmacologia , Sulfato de Magnésio/administração & dosagem , Masculino , Nociceptividade/efeitos dos fármacos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ratos , Modelos Animais de Doenças , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/fisiologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Analgésicos/farmacologia , Analgésicos/administração & dosagem , Interleucina-1beta/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
13.
Reprod Sci ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689081

RESUMO

Cuproptosis is a recently discovered mode of cell death that has garnered attention due to its association with various diseases. However, the intricate genetic relationship between cuproptosis and ovarian aging has remained largely unexplored. This study aimed to bridge this knowledge gap by leveraging data sets related to ovarian aging and cuproptosis. Through comprehensive bioinformatics analyses, facilitated by R software, we uncovered FDX1 as a potential cuproptosis-related gene with relevance to ovarian aging. To gain insights into FDX1's role, we conducted spatial transcriptome analyses in the ovaries of both young and aged female mice. These experiments revealed a significant reduction in FDX1 expression in the aging group compared to the young group. To substantiate these findings at the genetic level, we turned to clinical infertility biopsies. Impressively, we observed consistent results in biopsies from elderly infertile patients, reinforcing the link between FDX1 and ovarian aging. Moreover, we delved into the pharmacogenomics of ovarian cell lines and discovered that FDX1 expression levels were intricately associated with heightened sensitivity to specific small molecule drugs. This observation suggests that modulating FDX1 could potentially be a strategy to influence drug responses in ovarian-related therapies. In sum, this study marks a pioneering effort in identifying FDX1 as a cuproptosis-related gene implicated in ovarian aging. These findings hold substantial promise, not only in shedding light on the underlying mechanisms of ovarian aging but also in positioning FDX1 as a potential diagnostic biomarker and therapeutic target. With further research, FDX1 could play a pivotal role in advancing precision medicine and therapies for ovarian-related conditions.

14.
Diagnostics (Basel) ; 14(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472972

RESUMO

The challenges of respiratory infections persist as a global health crisis, placing substantial stress on healthcare infrastructures and necessitating ongoing investigation into efficacious treatment modalities. The persistent challenge of respiratory infections, including COVID-19, underscores the critical need for enhanced diagnostic methodologies to support early treatment interventions. This study introduces an innovative two-stage data analytics framework that leverages deep learning algorithms through a strategic combinatorial fusion technique, aimed at refining the accuracy of early-stage diagnosis of such infections. Utilizing a comprehensive dataset compiled from publicly available lung X-ray images, the research employs advanced pre-trained deep learning models to navigate the complexities of disease classification, addressing inherent data imbalances through methodical validation processes. The core contribution of this work lies in its novel application of combinatorial fusion, integrating select models to significantly elevate diagnostic precision. This approach not only showcases the adaptability and strength of deep learning in navigating the intricacies of medical imaging but also marks a significant step forward in the utilization of artificial intelligence to improve outcomes in healthcare diagnostics. The study's findings illuminate the path toward leveraging technological advancements in enhancing diagnostic accuracies, ultimately contributing to the timely and effective treatment of respiratory diseases.

15.
Environ Toxicol ; 39(6): 3292-3303, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38415901

RESUMO

The high mortality rate of glioblastoma multiforme (GBM), a lethal primary brain tumor, is attributable to postsurgical recurrence. STAT3, an oncogenic protein, is a signal transducer and transcription activator encourages cancer cell migration and proliferation, which results in resistance to therapy. STAT3 inhibition reduces cancer metastasis and improves patient prognosis. Bt354, a small molecule STAT inhibitor, exhibits significant cytotoxic and anti-proliferative activities against certain cancer types. Here, we demonstrated that exposure of GBM cells (U87 MG) to Bt354 had a significant, concentration-dependent growth suppression. Bt354 also induced apoptosis and downregulated the expression of the epithelial-mesenchymal transition genes. Therefore, this study suggests the potential of Bt354 for treating GBM owing to its ability to induce cytotoxicity.


Assuntos
Antineoplásicos , Apoptose , Glioblastoma , Fator de Transcrição STAT3 , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Fosforilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
16.
Biomed Pharmacother ; 172: 116279, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368838

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin condition primarily driven by T helper 2 (Th2) cytokines, resulting in skin barrier defects, angiogenesis, and inflammatory responses. The marine natural product excavatolide B (EXCB), isolated from the Formosan Gorgonian coral Briareum stechei, exhibits anti-inflammatory and analgesic properties. To enhance solubility, EXCB is chemically modified into the derivatives EXCB-61 salt and EXCB-79. The study aims to investigate the therapeutic effects of these compounds on dinitrochlorbenzene (DNCB)-induced skin damage and to elucidate the underlying anti-inflammatory and anti-angiogenesis mechanism. In vitro, using lipopolysaccharide (LPS)-induced RAW 264.7 cells, all compounds at 10 µM significantly inhibited expression of inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2), vascular endothelial growth factor (VEGF), and cytokines (interleukin (IL)-1ß, IL-6, and IL-17A). In vivo, topical application of these compounds on DNCB-induced AD mice alleviated skin symptoms, reduced serum levels of IgE, IL-4, IL-13, IL-17, and interferon-γ, and moderated histological phenomena such as hyperplasia, inflammatory cell infiltration, and angiogenesis. The three compounds restored the expression of skin barrier-related proteins (loricrin, filaggrin, and claudin-1) and reduced the expression of angiogenesis-related proteins (VEGF and platelet endothelial cell adhesion molecule-CD31) in the tissues. This is the first study to indicate that EXCB, EXCB-61 salt, and EXCB-79 can treat AD disease by reducing inflammation and angiogenesis. Hence, they may be considered potential candidates for the development of new drugs for AD.


Assuntos
Dermatite Atópica , Diterpenos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Inibidores da Angiogênese , Fator A de Crescimento do Endotélio Vascular , Dinitroclorobenzeno , Citocinas , Proteínas Angiogênicas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
17.
J Pers Med ; 14(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38248779

RESUMO

Secreted phosphoprotein 1 (SPP1), also known as osteopontin (OPN), is located on chromosome 4q22.1. This multifunctional secreted acidic glycoprotein is expressed intracellularly and extracellularly in various tissues, where it interacts with regulatory proteins and pro-inflammatory immune chemokines, contributing to the pathogenesis of multiple diseases. Nevertheless, the intricate genetic connections between SPP1 and ovarian aging remain largely unexplored. This study aims to bridge this knowledge gap by delving into ovarian aging and its associations with SPP1 using multi-omics data analysis. Our findings indicate that SPP1 is a potential gene related to ovarian aging. To comprehend the role of SPP1, we conducted spatial transcriptomic analyses on young and aged female mouse ovaries, revealing a significant decline in SPP1 expression in the aging group compared to the young group. Similarly, a significantly low level of SPP1 was found in the 73-year-old sample. Additionally, in-depth single-cell RNA-sequencing analysis identified associations between SPP1 and ITGAV, ITGB1, CD44, MMP3, and FN1. Notably, co-expression analysis highlighted a strong correlation between SPP1 and ITGB1. In summary, this study pioneers the identification of SPP1 as a gene implicated in ovarian aging. Further research into the role of SPP1 has the potential to advance precision medicine and improve treatment strategies for ovarian aging-related conditions.

18.
Curr Drug Deliv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38204256

RESUMO

BACKGROUND: Gefitinib (GFN) is an Epithelial Growth Factor Receptor (EGFR) inhibitor, and Food and Drug Administration (FDA) has approved medication to treat lung cancer. However, this investigation aimed to produce and characterize Gefitinib (GFN)-loaded chitosan and soy lecithin nanoparticles (NPs) modified with D-α-tocopheryl polyethylene glycol 1000 succinate mono ester (TPGS) and assess their therapeutic potential against HepG2 liver cell lines. METHODS: Chitosan, a cationic polymer with biocompatible and biodegradable properties, was combined with soy lecithin to develop the NPs loaded with GFN using a self-organizing ionic interaction methodology. RESULTS: The entrapment efficiency and drug loading were found to be 59.04±4.63 to 87.37±3.82% and 33.46±3.76 to 49.50±4.35%, respectively, and results indicated the encapsulation of GEN in NPs. The pH of the formulations was observed between 4.48-4.62. Additionally, all the prepared NPs showed the size and PDI range of 89.2±15.9 nm to 799.2±35.8 nm and 0.179±0.065 to 0.455±0.097, respectively. The FTIR bands in optimized formulation (GFN-NP1) indicated that the drug might be contained within the NP's core. The SEM photograph revealed the spherical shape of NPs. The kinetic release model demonstrated the combination of diffusion and erosion mechanisms. The IC50 value of GFN and GFN-NP1 formulation against the HepG2 cell lines were determined and found to be 63.22±3.36 µg/ml and 45.80±2.53 µg/ml, respectively. DAPI and PI staining agents were used to detect nuclear morphology. CONCLUSION: It was observed that the optimized GFN-NP1 formulation successfully internalized and inhibited the growth of HepG2 cells. Hence, it can be concluded that the prepared NPs can be a new therapeutic option for treating liver cancer.

19.
Mol Pharmacol ; 105(4): 286-300, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38278554

RESUMO

Prodigiosin (PG) is a naturally occurring polypyrrole red pigment produced by numerous microorganisms including some Serratia and Streptomyces strains. PG has exhibited promising anticancer activity; however, the molecular mechanisms of action of PG on malignant cells remain ambiguous. Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that governs a wide array of cellular processes in development and tissue homeostasis. Malfunctions of TGF-ß signaling are associated with numerous human cancers. Emerging evidence underscores the significance of internalized TGF-ß receptors and their intracellular trafficking in initiating signaling cascades. In this study, we identified PG as a potent inhibitor of the TGF-ß pathway. PG blocked TGF-ß signaling by targeting multiple sites of this pathway, including facilitating the sequestering of TGF-ß receptors in the cytoplasm by impeding the recycling of type II TGF-ß receptors to the cell surface. Additionally, PG prompts a reduction in the abundance of receptors on the cell surface through the disruption of the receptor glycosylation. In human Caucasian lung carcinoma cells and human hepatocellular cancer cell line cells, nanomolar concentrations of PG substantially diminish TGF-ß-triggered phosphorylation of Smad2 protein. This attenuation is further reflected in the suppression of downstream target gene expression, including those encoding fibronectin, plasminogen activator inhibitor-1, and N-cadherin. SIGNIFICANCE STATEMENT: Prodigiosin (PG) emerges from this study as a potent TGF-ß pathway inhibitor, disrupting receptor trafficking and glycosylation and reducing TGF-ß signaling and downstream gene expression. These findings not only shed light on PG's potential therapeutic role but also present a captivating avenue towards future anti-TGF-ß strategies.


Assuntos
Proteínas Serina-Treonina Quinases , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Polímeros/metabolismo , Pirróis , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fosforilação , Células Epiteliais/metabolismo , Fator de Crescimento Transformador beta1 , Proteína Smad2/metabolismo
20.
Int J Biol Sci ; 20(1): 218-230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164173

RESUMO

Copper (Cu) plays a crucial and diverse function in biological systems, acting as a cofactor at numerous sites of enzymatic activity and participating in various physiological processes, including oxidative stress regulation, lipid metabolism, and energy metabolism. Similar to other micronutrients, the body regulates Cu levels to ensure homeostasis; any disruption in Cu homeostasis may result in various illnesses. Cuproptosis causes proteotoxic stress and ultimately results in cell death by the binding of Cu ions to lipid-acylated proteins during the tricarboxylic acid cycle of mitochondrial respiration. Cu is not only involved in regulatory cell death (RCD), but also in exogenous factors that induce cellular responses and toxic outcomes. Cu imbalances also affect the transmission of several RCD messages. Therefore, this article presents a thorough examination of the mechanisms involved in Cu-induced RCD as well as the role of Cu complexes in its pathophysiology.


Assuntos
Morte Celular Regulada , Humanos , Morte Celular , Comunicação , Cobre/toxicidade , Metabolismo Energético , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...