Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 42(12): 2627-2639, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35878416

RESUMO

Plant-associated microbes including dark septate endophytes (DSEs) of forest trees play diverse functional roles in host fitness including growth promotion and increased defence. However, little is known about the impact on the fungal transcriptome and metabolites during tripartite interaction involving plant host, endophyte and pathogen. To understand the transcriptional regulation of endophyte and pathogen during co-infection, Norway spruce (Picea abies) seedlings were infected with DSE Phialocephala sphaeroides, or conifer root-rot pathogen Heterobasidion parviporum, or both. Phialocephala sphaeroides showed low but stable transcripts abundance (a decrease of 40%) during interaction with Norway spruce and conifer pathogen. By contrast, H. parviporum transcripts were significantly reduced (92%) during co-infection. With RNA sequencing analysis, P. sphaeroides experienced a shift from cell growth to anti-stress and antagonistic responses, while it repressed the ability of H. parviporum to access carbohydrate nutrients by suppressing its carbohydrate/polysaccharide-degrading enzyme machinery. The pathogen on the other hand secreted cysteine peptidase to restrict free growth of P. sphaeroides. The expression of both DSE P. sphaeroides and pathogen H. parviporum genes encoding plant growth promotion products were equally detected in both dual and tripartite interaction systems. This was further supported by the presence of tryptophan-dependent indolic compound in liquid culture of P. sphaeroides. Norway spruce and Arabidopsis seedlings treated with P. sphaeroides culture filtrate exhibited auxin-like phenotypes, such as enhanced root hairs, and primary root elongation at low concentration but shortened primary root at high concentration. The results suggested that the presence of the endophyte had strong repressive or suppressive effect on H. parviporum transcripts encoding genes involved in nutrient acquisition.


Assuntos
Basidiomycota , Coinfecção , Picea , Traqueófitas , Endófitos , Doenças das Plantas/microbiologia , Picea/genética , Picea/metabolismo , Basidiomycota/fisiologia , Plântula/genética , Plântula/microbiologia , Carboidratos , Noruega
2.
Tree Physiol ; 42(4): 891-906, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791486

RESUMO

Forest trees frequently interact with a diverse range of microorganisms including dark septate endophytes (DSEs) and fungal pathogens. Plant defense responses to either individual pathogens or endophytes have been widely studied, but very little is known on the effect of coinfection on host defenses. To study the impact of coinfection or tripartite interaction on plant growth and host defenses, Norway spruce (Picea abies (L.) Karst) seedlings were inoculated with a DSE Phialocephala sphaeroides or with a root pathogen Heterobasidion parviporum Niemela & Korhonen or coinfected with both fungi. The results showed that the DSE promoted the root growth of spruce seedlings. Control seedlings without any inoculum were subjected to sequencing and used as a baseline for identification of differentially expressed genes (DEGs). RNA-seq analysis of seedlings inoculated with P. sphaeroides, infected with H. parviporum or coinfected with both fungi resulted in a total of 5269 DEGs. The majority of DEGs were found in P. sphaeroides-inoculated seedlings. Lignin biosynthesis pathways were generally activated during fungal infections. The pattern was distinct with endophyte inoculation. The majority of the genes in the flavonoid biosynthesis pathway were generally suppressed during fungal infections. A specific transcriptional response to P. sphaeroides inoculation was the increased transcripts of genes involved in jasmonic acid biosynthesis, mitogen-activated protein kinases signaling pathway, plant hormone signal transduction and calcium-mediated signaling. This may have potentially contributed to promoting the root growth of seedlings. Although the coinfection suppressed the induction of numerous genes, no negative effect on the growth of the spruce seedlings occurred. We conclude that the subsequent H. parviporum infection triggered reprogramming of host metabolism. Conversely, the endophyte (P. sphaeroides), on the other hand, counteracted the negative effects of H. parviporum on the growth of the spruce seedlings.


Assuntos
Basidiomycota , Coinfecção , Picea , Ascomicetos , Basidiomycota/fisiologia , Endófitos , Noruega , Picea/metabolismo , Doenças das Plantas/microbiologia , Plântula/microbiologia
4.
Sci Rep ; 10(1): 5250, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251355

RESUMO

Fungal plant pathogens remain a serious threat to the sustainable agriculture and forestry, despite the extensive efforts undertaken to control their spread. White root rot disease is threatening rubber tree (Hevea brasiliensis) plantations throughout South and Southeast Asia and Western Africa, causing tree mortality and severe yield losses. Here, we report the complete genome sequence of the basidiomycete fungus Rigidoporus microporus, a causative agent of the disease. Our phylogenetic analysis confirmed the position of R. microporus among the members of Hymenochaetales, an understudied group of basidiomycetes. Our analysis further identified pathogen's genes with a predicted role in the decay of plant cell wall polymers, in the utilization of latex components and in interspecific interactions between the pathogen and other fungi. We also detected putative horizontal gene transfer events in the genome of R. microporus. The reported first genome sequence of a tropical rubber tree pathogen R. microporus should contribute to the better understanding of how the fungus is able to facilitate wood decay and nutrient cycling as well as tolerate latex and utilize resinous extractives.


Assuntos
Proteínas Fúngicas/genética , Látex/metabolismo , Polyporales/genética , Polyporales/patogenicidade , Madeira/microbiologia , Parede Celular/metabolismo , Parede Celular/microbiologia , Enzimas/genética , Enzimas/metabolismo , Regulação Fúngica da Expressão Gênica , Transferência Genética Horizontal , Genoma Fúngico , Interações Hospedeiro-Patógeno/genética , Interações Microbianas/genética , Filogenia , Polyporales/metabolismo , Metabolismo Secundário , Madeira/metabolismo
5.
Microorganisms ; 7(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817407

RESUMO

Heterobasidion parviporum Niemelä & Korhonen is an economically important basidiomycete, causing root and stem rot disease of Norway spruce (Picea abies (L.) Karst) in Northern Europe. The H. parviporum genome encodes numerous small secreted proteins, which might be of importance for interacting with mycorrhiza symbionts, endophytes, and other saprotrophs. We hypothesized that small secreted proteins from H. parviporum (HpSSPs) are involved in interspecific fungal interaction. To identify HpSSP-coding genes potentially involved, we screened the H. parviporum effectome and compared their transcriptomic profiles during fungal development and in planta tree infection. We further conducted phylogenetic analysis, and identified a subset of hypothetical proteins with nonpredicted domain or unknown function as HpSSPs candidates for further characterization. The HpSSPs candidates were selected based on high-quality sequence, cysteine residue frequency, protein size, and in planta expression. We subsequently explored their roles during in vitro interaction in paired cultures of H. parviporum with ectomycorrhizal Cortinarius gentilis, endophytic Phialocephala sphaeroides, saprotrophs (Mycena sp., Phlebiopsis gigantea, and Phanerochaete chrysosporium), respectively. The transcriptomic profile revealed that a large proportion of effector candidates was either barely expressed or highly expressed under all growth conditions. In vitro dual-culture test showed that P. sphaeroides and C. gentilis were overgrown by H. parviporum. The barrage zone formation or no physical contact observed in paired cultures with the saprotrophs suggest they had either combative interaction or antibiosis effect with H. parviporum. Several HpSSPs individuals were up- or downregulated during the nonself interactions. The results of HpSSPs gene expression patterns provide additional insights into the diverse roles of SSPs in tree infection and interspecific fungal interactions.

6.
Fungal Genet Biol ; 126: 37-49, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30763724

RESUMO

Heterobasidion parviporum Niemelä & Korhonen is a necrotrophic fungal pathogen of Norway spruce (Picea abies). The H. parviporum genome encodes numerous necrotrophic small secreted proteins (SSP) which might be important for promoting and sustaining the disease development. However, their transcriptional dynamics and plant defense response during infection are largely unknown. In this study, we identified a necrotrophic SSP named HpSSP35.8 and its coding gene was highly expressed in the pre-symptomatic phase of the host (Norway spruce) infection. We explored the impact of HpSSP35.8 on non-host Nicotiana benthamiana using Agrobacterium-mediated transient expression system under visible spectrum RGB imaging and chlorophyll fluorescence imaging. The results showed that HpSSP35.8 triggered a form of SSP-associated programmed cell death, accompanied by a decrease in the plant photosynthetic activity. Defense-related genes including WRKY12, ethylene response factor (ERF1α) and a chitinase gene PR4 were up-regulated in both HpSSP35.8-N. benthamiana interaction and H. parviporum-Norway spruce pathosystem. This study also highlighted the potential to use the chlorophyll fluorescence imaging approach to monitor both the indirect effects of SSP and also for the selection of other potential effector-like protein candidates.


Assuntos
Basidiomycota/patogenicidade , Clorofila/química , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Imagem Óptica , Fotossíntese , Picea/microbiologia
7.
Epigenetics ; 14(1): 16-40, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30633603

RESUMO

Heterobasidion parviporum is the most devastating fungal pathogen of conifer forests in Northern Europe. The fungus has dual life strategies, necrotrophy on living trees and saprotrophy on dead woods. DNA cytosine methylation is an important epigenetic modification in eukaryotic organisms. Our presumption is that the lifestyle transition and asexual development in H. parviporum could be driven by epigenetic effects. Involvements of DNA methylation in the regulation of aforementioned processes have never been studied thus far. RNA-seq identified lists of highly induced genes enriched in carbohydrate-active enzymes during necrotrophic interaction with host trees and saprotrophic sawdust growth. It also highlighted signaling- and transcription factor-related genes potentially associated with the transition of saprotrophic to necrotrophic lifestyle and groups of primary cellular activities throughout asexual development. Whole-genome bisulfite sequencing revealed that DNA methylation displayed pronounced preference in CpG dinucleotide context across the genome and mostly targeted transposable element (TE)-rich regions. TE methylation level demonstrated a strong negative correlation with TE expression, reinforcing the protective function of DNA methylation in fungal genome stability. Small groups of genes putatively subject to methylation transcriptional regulation in response to saprotrophic and necrotrophic growth in comparison with free-living mycelia were also explored. Our study reported on the first methylome map of a forest pathogen. Analysis of transcriptome and methylome variations associated with asexual development and different lifestyle strategies provided further understanding of basic biological processes in H. parviporum. More importantly, our work raised additional potential roles of DNA methylation in fungi apart from controlling the proliferation of TEs.


Assuntos
Adaptação Fisiológica , Basidiomycota/genética , Metilação de DNA , Transcriptoma , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Genoma Fúngico , Instabilidade Genômica , Reprodução Assexuada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...