Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Biol ; 71(4): 875-900, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34605923

RESUMO

Generally, the species is considered to be the only naturally occurring taxon. However, species recognized and defined using different species delimitation criteria cannot readily be compared, impacting studies of biodiversity through Deep Time. This comparability issue is particularly marked when comparing extant with extinct species because the only available data for species delimitation in fossils are derived from their preserved morphology, which is generally restricted to osteology in vertebrates. Here, we quantify intraspecific, intrageneric, and intergeneric osteological variability in extant species of lacertid lizards using pairwise dissimilarity scores based on a data set of 253 discrete osteological characters for 99 specimens referred to 24 species. Variability is always significantly lower intraspecifically than between individuals belonging to distinct species of a single genus, which is in turn significantly lower than intergeneric variability. Average values of intraspecific variability and associated standard deviations are consistent (with few exceptions), with an overall average within a species of 0.208 changes per character scored. Application of the same methods to six extinct lacertid species (represented by 40 fossil specimens) revealed that intraspecific osteological variability is inconsistent, which can at least in part be attributed to different researchers having unequal expectations of the skeletal dissimilarity within species units. Such a divergent interpretation of intraspecific and interspecific variability among extant and extinct species reinforces the incomparability of the species unit. Lacertidae is an example where extant species recognized and defined based on a number of delimitation criteria show comparable and consistent intraspecific osteological variability. Here, as well as in equivalent cases, application of those skeletal dissimilarity values to paleontological species delimitation potentially provides a way to ameliorate inconsistencies created by the use of morphology to define species. [Intraspecific variation; Lacertidae; morphological disparity; osteology; species delimitation; taxonomic bias.].


Assuntos
Lagartos , Osteologia , Animais , Biodiversidade , Fósseis , Humanos , Filogenia
2.
J Morphol ; 281(7): 808-833, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32449812

RESUMO

The skull osteology of Hierophis viridiflavus is here described and figured in detail on the basis of 18 specimens. The sample includes specimens from the ranges of both H. viridiflavus viridiflavus and H. viridiflavus carbonarius as well as specimens not identified at sub-specific level. The main characters that define H. viridiflavus in comparison to the parapatric congeneric species Hierophis gemonensis are wide maxillary diastema, basioccipital crest well distinct in three lobes and basioccipital process well marked. The foramina of the otoccipital and prootic, and the basioccipital process of the basioccipital are among the most ontogenetically variable characters, as indicated by two juvenile specimens included in the sample. A specimen-level phylogenetic analysis including H. gemonensis and other outgroups (overall 6 species, 26 specimens, 64 skull characters) recovered all H. viridiflavus specimens in one clade, indicating the presence of a clear phylogenetic signal in the applied characters. However, the resolution within the H. viridiflavus clade is poor the monophyly of H. viridiflavus carbonarius was retrieved, but not that of Hierophis v. viridiflavus. Probably due to the relatively high variability, the skull morphology does not support the recently proposed specific status of the two subspecies.


Assuntos
Colubridae/anatomia & histologia , Osteologia , Filogenia , Crânio/anatomia & histologia , Animais , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X
3.
J Anat ; 235(2): 313-345, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125128

RESUMO

The limbless skink Ophiomorus punctatissimus is a cryptozoic species found in the Peloponnese region of Greece and on the Greek island Kythira. To provide the first thorough description of the cranial and postcranial osteology of this species, both disarticulated specimens and X-ray computed tomographies of wet-preserved specimens were examined in detail. Resulting from this, an anatomical atlas of this species is provided. Two separate considerations, an evolutionary and an ecomorphological one, are made based on the observed adaptations related to limb loss in this skink. The structure of the girdles shows a particular pattern of reduction: whereas the pelvic girdle is mostly vestigial, the pectoral girdle is instead well developed, with all the elements typical of limbed lizards except for the actual limbs. This led us to hypothesize an asynchronous pattern of limb reduction during the evolution of this species, in which the hindlimbs regressed earlier than the forelimbs. Furthermore, considerations based on overall body morphology, osteology and the structure of the inner ear led to the recognition of this species as a burrowing ecomorph. In contrast to the morphology normally displayed in this ecomorph, O. punctatissimus is characterized by the retention of autotomic vertebrae in its tail. This is consistent with the habitats in which it lives, where active burrowing would be difficult because of the hard, rocky terrain. Instead, this skink hides among rocks on the surface and is, therefore, subject to greater predation risk.


Assuntos
Evolução Biológica , Lagartos/anatomia & histologia , Esqueleto/anatomia & histologia , Animais , Extremidades , Osteologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...