Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14576-14586, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752849

RESUMO

We present a case study on how to improve an existing metal-free catalyst for a particularly difficult reaction, namely, the Corey-Bakshi-Shibata (CBS) reduction of butanone, which constitutes the classic and prototypical challenge of being able to differentiate a methyl from an ethyl group. As there are no known strategies on how to address this challenge, we leveraged the power of machine learning by constructing a realistic (for a typical laboratory) small, albeit high-quality, data set of about 100 reactions (run in triplicate) that we used to train a model in combination with a key-intermediate graph (of substrate and catalyst) to predict the differences in Gibbs activation energies ΔΔG‡ of the enantiomeric reaction paths. With the help of this model, we were able to select and subsequently screen a small selection of catalysts and increase the selectivity for the CBS reduction of butanone to 80% enantiomeric excess (ee), the highest possible value achieved to date for this substrate with a metal-free catalyst, thereby also exceeding the best available enzymatic systems (64% ee) and the selectivity with Corey's original catalyst (60% ee). This translates into a >50% improvement in relative ΔG‡ from 0.9 to 1.4 kcal mol-1. We underscore the transformative potential of machine learning in accelerating catalyst design because we rely on a manageable small data set and a key-intermediate graph representing a combination of catalyst and substrate graphs in lieu of a transition-state model. Our results highlight the synergy of synthetic chemistry and data-centric approaches and provide a blueprint for future catalyst optimization.

2.
J Agric Food Chem ; 72(13): 7511-7516, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517735

RESUMO

The determination of odor threshold values can be performed in various matrices, including air, and serves as a parameter to compare the potencies of odorous compounds. Typically, the odor thresholds in air are determined by gas chromatography-olfactory (GC-O) and referenced to an internal standard, most often (E)-dec-2-enal. Herein, a direct gas chromatography-flame ionization detector-olfactory analysis method for the determination of odor thresholds in air is reported. As model substrates for this novel approach, naturally occurring substances (R)-1-p-menthene-8-thiol as well as (3S,3aS,6R,7aS)-3,6-dimethyl-3a,4,5,6,7,7a-hexahydro-3H-1-benzofuran-2-one were used. The latter compound was synthesized from (-)-isopulegol and exhibited an extremely low odor recognition threshold of 1.9 × 10-6 ng L-1 air, the lowest value reported for a fungal aroma compound thus far.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Olfato , Cromatografia Gasosa , Ionização de Chama , Compostos Orgânicos Voláteis/química
3.
J Am Chem Soc ; 146(1): 170-180, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117177

RESUMO

The kinetic resolution of trans-cyclohexane-1,2-diol with a lipophilic oligopeptide catalyst shows extraordinary selectivities. To improve our understanding of the factors governing selectivity, we quantified the Gibbs free energies of interactions of the peptide with both enantiomers of trans-cyclohexane-1,2-diol using nuclear magnetic resonance (NMR) spectroscopy. For this, we use advanced methods such as transverse relaxation (R2), diffusion measurements, saturation transfer difference (STD), and chemical shift (δ) analysis of peptide-diol mixtures upon varying their composition (NMR titrations). The methods employed give comparable and consistent results. The molecular recognition by the catalyst is approximately 3 kJ mol-1 in favor of the preferentially acetylated (R,R)-enantiomer in the temperature range studied. Interestingly, the difference of 3 kJ mol-1 is also confirmed by results from reaction monitoring of the acylation step under catalytic conditions, indicating that this finding is true regardless of whether the investigation is performed on the acetylated species or on the free catalyst. To arrive at these conclusions, the self-association of both the catalyst and the substrate in toluene was found to play an important role and thus needs to be taken into account in reaction screening.

4.
J Agric Food Chem ; 71(20): 7744-7751, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37172111

RESUMO

Among the monoterpenoid aroma compounds formed by the basidiomycete Cystostereum murrayi are highly potent bicyclic benzofuran derivatives. In addition to the dill ethers previously described in a few fungi, two stereoisomers of the rare 3,6-dimethyl-3a,4,5,6,7,7a-hexahydro-3H-1-benzofuran-2-one (1a and 2c), also known as dihydromenthofurolactones, and a C3-unsaturated analogue (3a) are formed by C. murrayi. The analysis of synthesized reference standards of the lactones allowed an unambiguous assignment of the stereoisomers formed by the fungus. Despite a similar structure, two key differences in the stereochemistry of the lactones and dill ethers emerged. The analysis of submerged cultures further revealed the formation of additional, so far unknown, fungal terpenoids, including limonen-10-ol (7) and the corresponding aldehyde limonen-10-al (8). Analysis of chiral terpenoids as well as supplementation studies, including stable isotope-labeled compounds, indicated independent biogenesis pathways for dill ethers and lactones.


Assuntos
Anethum graveolens , Benzofuranos , Odorantes/análise , Lactonas/química , Monoterpenos , Éteres
5.
Angew Chem Int Ed Engl ; 62(23): e202300761, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36877095

RESUMO

The interstellar candidate phosphorus mononitride PN, a metastable species, was generated through high-vacuum flash pyrolysis of (o-phenyldioxyl)phosphinoazide in cryogenic matrices. Although the PN stretching band was not directly detected because of its low infrared intensity and possible overlaps with other strong bands, o-benzoquinone, carbon monoxide, and cyclopentadienone as additional fragmentation products were clearly identified. Moreover, an elusive o-benzoquinone-PN complex formed when (o-phenyldioxyl)phosphinoazide was exposed to UV irradiation at λ=254 nm. Its recombination to (o-phenyldioxyl)-λ5 -phosphinonitrile was observed upon irradiation with the light at λ=523 nm, which demonstrates for the first time the reactivity of PN towards an organic molecule. Energy profile computations at the B3LYP/def2-TZVP density functional theory level reveal a concerted mechanism. To provide further evidence, UV/Vis spectra of the precursor and the irradiation products were recorded and agree well with time-dependent DFT computations.

6.
Chem Commun (Camb) ; 59(18): 2596-2599, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753323

RESUMO

1,2-Ethenediols are deemed key intermediates in prebiotic and interstellar syntheses of carbohydrates. Here we present the gas-phase synthesis of these enediols, the high-energy tautomers of glycolaldehyde, trapped in cryogenic argon matrices. Importantly, upon photolysis at λ = 180-254 nm, the enols rearrange to the simplest sugar glycolaldehyde.

7.
Angew Chem Int Ed Engl ; 62(11): e202218548, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36656102

RESUMO

Simple unhindered aldimines tend to hydrolyze or oligomerize and are therefore spectroscopically not well characterized. Herein we report the formation and spectroscopic characterization of the simplest imino acid, namely glycine imine, by cryogenic matrix isolation IR and UV/Vis spectroscopy. Glycine imine forms after UV irradiation of 2-azidoacetic acid by N2 extrusion in anti-(E,E)- and anti-(Z,Z)-conformation that can be photochemically interconverted. In matrix isolation pyrolysis experiments with 2-azidoacetic acid, glycine imine cannot be trapped as it further decarboxylates to aminomethylene. In aqueous solution glycine imine is hydrolyzed to hydroxy glycine and hydrated glyoxylic acid. At higher concentrations or in the presence of FeII SO4 as a reducing agent glycine imine undergoes self-reduction by oxidative decarboxylation chemistry. Glycine imine may be seen as one of the key reaction intermediates connecting prebiotic amino acid and sugar formation chemistry.

8.
Chemistry ; 29(18): e202203002, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36538197

RESUMO

We report the site-selective acetylation of partially protected monosaccharides using immobilized oligopeptide catalysts, which are readily accessible via solid-phase peptide synthesis. The catalysts are able to invert the intrinsic selectivity, which was determined using N-methylimidazole, for a variety of pyranosides. We demonstrate that the catalysts are stable for multiple reaction cycles and can be easily reused after separation from the reaction solution. The catalysts can also be used in flow without loss of reactivity and selectivity.

9.
J Agric Food Chem ; 69(21): 5997-6004, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34008976

RESUMO

Submerged cultures of the basidiomycota Cystostereum murrayi emit an intensive coconut-like, sweetish, and buttery smell. For identification of the key aroma compounds, an aroma dilution analysis using dynamic headspace was performed by adjusting the split ratio of the GC inlet system. Flavor dilution (FD) factors varied from 22 up to ≥218, whereby the largest class of compounds represented terpenoids, including two rare stereoisomers of 3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran (dill ether, ee ≥ 99.9). By means of nuclear magnetic resonance spectroscopy, the substances with the highest FD factors (29, 212, and 218) were identified as diastereomers of 3,6-dimethyl-3a,4,5,6,7,7a-hexayhydro-3H-1-benzofuran-2-one (dihydromenthofurolactone) and as its corresponding C3-unsaturated lactone. The latter two compounds have not been described for Cystostereum murrayi or for any other basidiomycota previously. Supplementation studies using 2-13C-d-glucose indicated that these lactones as well as the two stereoisomers of dill ether and other terpenoids were formed de novo by the fungus.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Agaricales , Aromatizantes , Técnicas de Diluição do Indicador , Odorantes/análise , Olfato
10.
J Org Chem ; 86(5): 3907-3922, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617252

RESUMO

Herein, we report the oligopeptide-catalyzed site-selective acylation of partially protected monosaccharides. We identified catalysts that invert site-selectivity compared to N-methylimidazole, which was used to determine the intrinsic reactivity, for 4,6-O-protected glucopyranosides (trans-diols) as well as 4,6-O-protected mannopyranosides (cis-diols). The reaction yields up to 81% of the inherently unfavored 2-O-acetylated products with selectivities up to 15:1 using mild reaction conditions. We also determined the influence of protecting groups on the reaction and demonstrate that our protocol is suitable for one-pot reactions with multiple consecutive protection steps.


Assuntos
Manose , Monossacarídeos , Acilação , Catálise , Oligopeptídeos
11.
J Phys Chem A ; 124(10): 2014-2018, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32065851

RESUMO

The initial oxidation product of dimethyl sulfide in the marine boundary layer, the methyl thiomethyl radical, has remained elusive. A structurally analogous biradical with one radical center in the α-position to a sulfur atom could now be obtained by UV irradiation of p-nitrobenzaldehyde dithiane isolated in solid dinitrogen (N2) or Ar at cryogenic temperatures. A spin-forbidden reaction with triplet dioxygen (3O2) does not occur. The dithiane of o-nitrobenzaldehyde rather undergoes a series of rearrangements under the same conditions, resulting in overall photodeprotection.

12.
J Org Chem ; 85(4): 1835-1846, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31763833

RESUMO

We present a novel concept for the in situ control of site-selectivity of catalytic acetylations of partially protected sugars using light as external stimulus and oligopeptide catalysts equipped with an azobenzene moiety. The isomerizable azobenzene-peptide backbone defines the size and shape of the catalytic pocket, while the π-methyl-l-histidine (Pmh) moiety transfers the electrophile. Photoisomerization of the E- to the Z-azobenzene catalyst (monitored via NMR) with an LED (λ = 365 nm) drastically changes the chemical environment around the catalytically active Pmh moiety, so that the light-induced change in the catalyst shape alters site-selectivity. As a proof of principle, we employed (4,6-O-benzylidene)methyl-α-d-pyranosides, which provide a change in regioselectivity from 2:1 (E) to 1:5 (Z) for the monoacetylated products at room temperature. The validity of this new catalyst-design concept is further demonstrated with the regioselective acetylation of the natural product quercetin. In situ irradiation NMR spectroscopy was used to quantify photostationary states under continuous irradiation with UV light.

13.
Nat Chem ; 10(11): 1141-1147, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30202100

RESUMO

Carbohydrates (CH2O)n are the formal adducts of carbon (atoms) to water with a repeating unit that structurally resembles H-C̈-OH (hydroxymethylene). Although hydroxymethylene has been suggested as a building block for sugar formation, it is a reactive species that had escaped detection until recently. Here we demonstrate that formaldehyde reacts with its isomer hydroxymethylene to give glycolaldehyde in a nearly barrierless reaction. This carbonyl-ene-type transformation operates in the absence of base and solvent at cryogenic temperatures similar to those found in extraterrestrial environments or interstellar clouds. Hydroxymethylene acts as a building block for an iterative sugar synthesis, as we demonstrate through the formation of the triose glyceraldehyde. The thermodynamically preferred ketose dihydroxyacetone does not form, and the formation of further branched sugars in the iterative synthesis presented here is unlikely. The results therefore provide a link between the well-known formose (Butlerow) reaction and sugar formation under non-aqueous conditions.

14.
J Am Chem Soc ; 140(39): 12333-12336, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30187747

RESUMO

We report the spontaneous gas-phase formation of 1,3-dioxolane-4-ol, a mixed hemiacetal resulting from the addition of glycolaldehyde to formaldehyde. It was spectroscopically characterized by matching matrix IR spectra with coupled cluster computations. The formation of the hemiacetal must be surface-catalyzed owing to the very high computed reaction barrier of 39.8 kcal mol-1. The reaction barrier is lowered by almost 20 kcal mol-1 when a single water molecule acts as a proton shuttle in a favorable six-membered transition state. We characterized the hemiacetal in solution via NMR spectroscopy and followed its decomposition into its constituents within a few hours; it also dissociates upon contact with water. Sugars form in the presence of Ca(OH)2, in line with formose-type reactivity. 1,3-Dioxolane-4-ol may be considered a storage form for formaldehyde and glycolaldehyde that is rather stable in the gas-phase.

15.
Beilstein J Org Chem ; 14: 1238-1243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977392

RESUMO

The understanding and control of the light-induced isomerization of azobenzenes as one of the most important classes of molecular switches is crucial for the design of light-responsive materials using this entity. Herein, we present the stabilization of metastable (Z)-azobenzenes by London dispersion interactions, even in the presence of comparably stronger hydrogen bonds in various solvents. The Z→E isomerization rates of several N-substituted 4,4'-bis(4-aminobenzyl)azobenzenes were measured. An intramolecular stabilization was observed and explained by the interplay of intramolecular amide and carbamate hydrogen bonds as well as London dispersion interactions. Whereas in toluene, 1,4-dioxane and tert-butyl methyl ether the hydrogen bonds dominate, the variation in stabilization of the different substituted azobenzenes in dimethyl sulfoxide can be rationalized by London dispersion interactions. These findings were supported by conformational analysis and DFT computations and reveal low-energy London dispersion forces to be a significant factor, even in the presence of hydrogen bonds.

16.
Angew Chem Int Ed Engl ; 57(37): 12157-12161, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30004165

RESUMO

The total synthesis of the naturally occurring antibiotic GE81112A, a densely functionalized tetrapeptide, is reported. Comparison of spectral data with those of the natural product and the lack of biological activity of the synthesized compound led us to revise the published configuration of the 3-hydroxypipecolic acid moiety. This hypothesis was fully validated by the synthesis of the corresponding epimer.


Assuntos
Antibacterianos/síntese química , Oligopeptídeos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Escherichia coli/efeitos dos fármacos , Histidina/síntese química , Histidina/química , Testes de Sensibilidade Microbiana , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Estereoisomerismo
17.
Angew Chem Int Ed Engl ; 55(51): 15754-15759, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27879043

RESUMO

We report on a detailed NMR spectroscopic study of the catalyst-substrate interaction of a highly enantioselective oligopeptide catalyst that is used for the kinetic resolution of trans-cycloalkane-1,2-diols via monoacylation. The extraordinary selectivity has been rationalized by molecular dynamics as well as density functional theory (DFT) computations. Herein we describe the conformational analysis of the organocatalyst studied by a combination of nuclear Overhauser effect (NOE) and residual dipolar coupling (RDC)-based methods that resulted in an ensemble of four final conformers. To corroborate the proposed mechanism, we also investigated the catalyst in mixtures with both trans-cyclohexane-1,2-diol enantiomers separately, using advanced NMR methods such as T1 relaxation time and diffusion-ordered spectroscopy (DOSY) measurements to probe molecular aggregation. We determined intramolecular distance changes within the catalyst after diol addition from quantitative NOE data. Finally, we developed a pure shift EASY ROESY experiment using PSYCHE homodecoupling to directly observe intermolecular NOE contacts between the trans-1,2-diol and the cyclohexyl moiety of the catalyst hidden by spectral overlap in conventional spectra. All experimental NMR data support the results proposed by earlier computations including the proposed key role of dispersion interaction.

18.
Angew Chem Int Ed Engl ; 55(8): 2719-23, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26804727

RESUMO

Here we report the development of the first enantioselective Dakin-West reaction, yielding α-acetamido methylketones with up to 58 % ee with good yields. Two of the obtained products were recrystallized once to achieve up to 84 % ee. The employed methylimidazole-containing oligopeptides catalyze both the acetylation of the azlactone intermediate and the terminal enantioselective decarboxylative protonation. We propose a dispersion-controlled reaction path that determines the asymmetric reprotonation of the intermediate enolate after the decarboxylation.

19.
Chemistry ; 21(45): 16203-8, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26407155

RESUMO

A multicatalytic three-step reaction consisting of epoxidation, hydrolysis, and enantioselective monoacylation of cyclohexene was studied by using mass spectrometry (MS). The reaction sequence was carried out in a one-pot reaction using a multicatalyst. All reaction steps were thoroughly analyzed by electrospray ionization (ESI) MS (and MS/MS), as well as high-resolution MS for structure elucidation. These studies allow us to shed light on the individual mode of action of each catalytic moiety. Thus, we find that under the epoxidation conditions, the catalytically active N-methyl imidazole for the terminal acylation step is partially deactivated through oxidation. This observation helps to explain the lower efficiency of the catalyst in the last step compared to the monoacylation performed separately. All reactive intermediates and products of the reaction sequence, as well as of the side-reactions, were monitored, and we present a working mechanism of the reaction.

20.
Chem Commun (Camb) ; 50(10): 1221-3, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24336565

RESUMO

We demonstrate the application of a multicatalyst to the oxidation of a broad variety of aldehydes and subsequent enantioselective esterification of the incipient acids with (±)-trans-cycloalkane-1,2-diols. This reaction operates well with a multicatalyst bearing two independent catalytic moieties that provide monoprotected 1,2-diols in one pot.


Assuntos
Alcanos/química , Ésteres/química , Álcoois/química , Aldeídos/química , Catálise , Ciclização , Cinética , Estrutura Molecular , Oxirredução , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...