Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inform Med Unlocked ; 37: 101188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742350

RESUMO

The aim of this observational retrospective study is to improve early risk stratification of hospitalized Covid-19 patients by predicting in-hospital mortality, transfer to intensive care unit (ICU) and mechanical ventilation from electronic health record data of the first 24 h after admission. Our machine learning model predicts in-hospital mortality (AUC = 0.918), transfer to ICU (AUC = 0.821) and the need for mechanical ventilation (AUC = 0.654) from a few laboratory data of the first 24 h after admission. Models based on dichotomous features indicating whether a laboratory value exceeds or falls below a threshold perform nearly as good as models based on numerical features. We devise completely data-driven and interpretable machine-learning models for the prediction of in-hospital mortality, transfer to ICU and mechanical ventilation for hospitalized Covid-19 patients within 24 h after admission. Numerical values of. CRP and blood sugar and dichotomous indicators for increased partial thromboplastin time (PTT) and glutamic oxaloacetic transaminase (GOT) are amongst the best predictors.

2.
J Pers Med ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36579493

RESUMO

Several risk scores were developed during the COVID-19 pandemic to identify patients at risk for critical illness as a basic step to personalizing medicine even in pandemic circumstances. However, the generalizability of these scores with regard to different populations, clinical settings, healthcare systems, and new epidemiological circumstances is unknown. The aim of our study was to compare the predictive validity of qSOFA, CRB65, NEWS, COVID-GRAM, and 4C-Mortality score. In a monocentric retrospective cohort, consecutively hospitalized adults with COVID-19 from February 2020 to June 2021 were included; risk scores at admission were calculated. The area under the receiver operating characteristic curve and the area under the precision-recall curve were compared using DeLong's method and a bootstrapping approach. A total of 347 patients were included; 23.6% were admitted to the ICU, and 9.2% died in a hospital. NEWS and 4C-Score performed best for the outcomes ICU admission and in-hospital mortality. The easy-to-use bedside score NEWS has proven to identify patients at risk for critical illness, whereas the more complex COVID-19-specific scores 4C and COVID-GRAM were not superior. Decreasing mortality and ICU-admission rates affected the discriminatory ability of all scores. A further evaluation of risk assessment is needed in view of new and rapidly changing epidemiological evolution.

3.
NPJ Digit Med ; 5(1): 122, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35986075

RESUMO

Individual organizations, such as hospitals, pharmaceutical companies, and health insurance providers, are currently limited in their ability to collect data that are fully representative of a disease population. This can, in turn, negatively impact the generalization ability of statistical models and scientific insights. However, sharing data across different organizations is highly restricted by legal regulations. While federated data access concepts exist, they are technically and organizationally difficult to realize. An alternative approach would be to exchange synthetic patient data instead. In this work, we introduce the Multimodal Neural Ordinary Differential Equations (MultiNODEs), a hybrid, multimodal AI approach, which allows for generating highly realistic synthetic patient trajectories on a continuous time scale, hence enabling smooth interpolation and extrapolation of clinical studies. Our proposed method can integrate both static and longitudinal data, and implicitly handles missing values. We demonstrate the capabilities of MultiNODEs by applying them to real patient-level data from two independent clinical studies and simulated epidemiological data of an infectious disease.

4.
Bioinformatics ; 37(9): 1330-1331, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32931565

RESUMO

SUMMARY: Dynamic models formulated as ordinary differential equations can provide information about the mechanistic and causal interactions in biological systems to guide targeted interventions and to design further experiments. Inaccurate knowledge about the structure, functional form and parameters of interactions is a major obstacle to mechanistic modeling. A further challenge is the open nature of biological systems which receive unknown inputs from their environment. The R-package SEEDS implements two recently developed algorithms to infer structural model errors and unknown inputs from output measurements. This information can facilitate efficient model recalibration as well as experimental design in the case of misfits between the initial model and data. AVAILABILITY AND IMPLEMENTATION: For the R-package seeds, see the CRAN server https://cran.r-project.org/package=seeds.


Assuntos
Software , Biologia de Sistemas , Algoritmos , Modelos Estruturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...