Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0261170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914762

RESUMO

OBJECTIVE: We have used long-read single molecule, real-time (SMRT) sequencing to fully characterize a ~12Mb genomic region on chromosome Xq24-q27, significantly linked to bipolar disorder (BD) in an extended family from a genetic sub-isolate. This family segregates BD in at least four generations with 24 affected individuals. METHODS: We selected 16 family members for targeted sequencing. The selected individuals either carried the disease haplotype, were non-carriers of the disease haplotype, or served as married-in controls. We designed hybrid capture probes enriching for 5-9Kb fragments spanning the entire 12Mb region that were then sequenced to screen for candidate structural variants (SVs) that could explain the increased risk for BD in this extended family. RESULTS: Altogether, 201 variants were detected in the critically linked region. Although most of these represented common variants, three variants emerged that showed near-perfect segregation among all BD type I affected individuals. Two of the SVs were identified in or near genes belonging to the RNA Binding Motif Protein, X-Linked (RBMX) gene family-a 330bp Alu (subfamily AluYa5) deletion in intron 3 of the RBMX2 gene and an intergenic 27bp tandem repeat deletion between the RBMX and G protein-coupled receptor 101 (GPR101) genes. The third SV was a 50bp tandem repeat insertion in intron 1 of the Coagulation Factor IX (F9) gene. CONCLUSIONS: Among the three genetically linked SVs, additional evidence supported the Alu element deletion in RBMX2 as the leading candidate for contributing directly to the disease development of BD type I in this extended family.


Assuntos
Elementos Alu , Transtorno Bipolar/genética , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Feminino , Humanos , Masculino , Linhagem
2.
BMC Genomics ; 21(1): 873, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287706

RESUMO

BACKGROUND: Orang-utans comprise three critically endangered species endemic to the islands of Borneo and Sumatra. Though whole-genome sequencing has recently accelerated our understanding of their evolutionary history, the costs of implementing routine genome screening and diagnostics remain prohibitive. Capitalizing on a tri-fold locus discovery approach, combining data from published whole-genome sequences, novel whole-exome sequencing, and microarray-derived genotype data, we aimed to develop a highly informative gene-focused panel of targets that can be used to address a broad range of research questions. RESULTS: We identified and present genomic co-ordinates for 175,186 SNPs and 2315 Y-chromosomal targets, plus 185 genes either known or presumed to be pathogenic in cardiovascular (N = 109) or respiratory (N = 43) diseases in humans - the primary and secondary causes of captive orang-utan mortality - or a majority of other human diseases (N = 33). As proof of concept, we designed and synthesized 'SeqCap' hybrid capture probes for these targets, demonstrating cost-effective target enrichment and reduced-representation sequencing. CONCLUSIONS: Our targets are of broad utility in studies of orang-utan ancestry, admixture and disease susceptibility and aetiology, and thus are of value in addressing questions key to the survival of these species. To facilitate comparative analyses, these targets could now be standardized for future orang-utan population genomic studies. The targets are broadly compatible with commercial target enrichment platforms and can be utilized as published here to synthesize applicable probes.


Assuntos
Genômica , Pongo , Animais , Bornéu , Suscetibilidade a Doenças , Humanos , Indonésia , Pongo/genética
3.
J Am Vet Med Assoc ; 256(7): 767-769, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176586

Assuntos
Animais
4.
Methods Mol Biol ; 1708: 383-405, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29224155

RESUMO

Cytosine methylation has been shown to have a role in a host of biological processes. In mammalian biology these include stem cell differentiation, embryonic development, genomic imprinting, inflammation, and silencing of transposable elements. Given the central importance of these processes, it is not surprising to find aberrant cytosine methylation patterns associated with many disorders in humans, including cancer, cardiovascular disease, and neurological disease. While whole genome shotgun bisulfite sequencing (WGBS) has recently become feasible, generating high sequence coverage data for the entire genome is expensive, both in terms of money and analysis time, when generally only a small subset of the genome is of interest to most researchers. This report details a procedure for the targeted enrichment of bisulfite treated DNA via SeqCap Epi, allowing high resolution focus of next generation sequencing onto a subset of the genome for high resolution cytosine methylation analysis. Regions ranging in size from only a few kb up to over 200 Mb may be targeted, including the use of the SeqCap Epi CpGiant design which is designed to target 5.5 million CpGs in the human genome. Finally, multiple samples may be multiplexed and sequenced together to provide an inexpensive method of generating methylation data for a large number of samples in a high throughput fashion.


Assuntos
Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , Ilhas de CpG , Humanos , Software , Sulfitos
5.
PLoS Genet ; 11(10): e1005569, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26496357

RESUMO

Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility.


Assuntos
Proteínas do Citoesqueleto/genética , Nanismo/genética , Infertilidade Masculina/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Espermatogênese/genética , Animais , Proteínas de Ciclo Celular , Centríolos/genética , Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/genética , Nanismo/patologia , Humanos , Infertilidade Masculina/patologia , Masculino , Meiose/genética , Camundongos , Proteínas/genética , Proteínas/metabolismo , Células de Sertoli/metabolismo , Espermatogônias/metabolismo
6.
Nucleic Acids Res ; 43(12): e81, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25813045

RESUMO

We present a capture-based approach for bisulfite-converted DNA that allows interrogation of pre-defined genomic locations, allowing quantitative and qualitative assessments of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) at CG dinucleotides and in non-CG contexts (CHG, CHH) in mammalian and plant genomes. We show the technique works robustly and reproducibly using as little as 500 ng of starting DNA, with results correlating well with whole genome bisulfite sequencing data, and demonstrate that human DNA can be tested in samples contaminated with microbial DNA. This targeting approach will allow cell type-specific designs to maximize the value of 5mC and 5hmC sequencing.


Assuntos
5-Metilcitosina/análise , Citosina/análogos & derivados , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Alelos , Animais , Linhagem Celular , Citosina/análise , Metilação de DNA , Genômica/métodos , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Sulfitos
7.
Plant Cell ; 26(12): 4602-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25527708

RESUMO

DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Zea mays/genética , Alelos , Cruzamentos Genéticos , DNA (Citosina-5-)-Metiltransferases/genética , Epigenômica , Genes de Plantas , Mutação
8.
Am J Vet Res ; 69(10): 1329-35, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18828691

RESUMO

OBJECTIVE: To determine the role of intraocular bacteria in the pathogenesis of equine recurrent uveitis (ERU) in horses from the southeastern United States by evaluating affected eyes of horses with ERU for bacterial DNA and intraocular production of antibodies against Leptospira spp. SAMPLE POPULATION: Aqueous humor, vitreous humor, and serum samples of 24 clinically normal horses, 52 horses with ERU, and 17 horses with ocular inflammation not associated with ERU (ie, non-ERU inflammation). PROCEDURES: Ribosomal RNA quantitative PCR (real-time PCR) assay was used to detect bacterial DNA in aqueous humor and vitreous humor from clinically normal horses (n = 12) and horses with chronic (> 3-month) ERU (28). Aqueous humor and serum were also evaluated for anti-Leptospira antibody titers from clinically normal horses (n = 12), horses with non-ERU inflammation (17), and horses with confirmed chronic ERU (24). RESULTS: Bacterial DNA was not detected in aqueous humor or vitreous humor of horses with ERU or clinically normal horses. No significant difference was found in titers of anti-Leptospira antibodies in serum or aqueous humor among these 3 groups. Only 2 horses, 1 horse with ERU and 1 horse with non-ERU inflammation, had definitive intraocular production of antibodies against Leptospira organisms. CONCLUSIONS AND CLINICAL RELEVANCE: In horses from the southeastern United States, Leptospira organisms may have helped initiate ERU in some, but the continued presence of the organisms did not play a direct role in the pathogenesis of this recurrent disease.


Assuntos
Doenças dos Cavalos/microbiologia , Uveíte/veterinária , Animais , Humor Aquoso/microbiologia , Cavalos , Leptospira/genética , Leptospira/isolamento & purificação , Leptospirose/microbiologia , Leptospirose/veterinária , Reação em Cadeia da Polimerase , RNA Ribossômico/genética , Recidiva , Valores de Referência , Sudeste dos Estados Unidos , Uveíte/microbiologia , Corpo Vítreo/microbiologia
9.
J Burn Care Res ; 28(1): 6-12, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17211194

RESUMO

Sepsis caused by multidrug-resistant bacterial infections in critically injured patients has become a major clinical problem. Recently, Acinetobacter baumannii (AB) wound infections, especially in our critically injured soldiers fighting in Iraq and Afghanistan, is posing a major clinical problem and an economic burden. ConjuGon, Inc., has developed a novel antibacterial therapeutic technology using bacterial conjugation. The donor cells are attenuated Escherichia coli carrying a conjugative plasmid. The expression of bactericidal genes cloned on the plasmid is tightly repressed in the donor cells but becomes de-repressed once mobilized into a pathogen and disrupts protein synthesis. Here, we tested the efficacy of this novel conjugation technology to control and eradicate a drug-resistant clinical isolate of AB wound infection both in vitro and in a murine burn sepsis model. C57Blk/6J mice were divided into burn (B) and burn sepsis (BS) groups. All animals received a 12% TBSA dorsal scald full-thickness burn. The BS group was inoculated with multidrug-resistant AB (1 x 10(5) colony-forming units [CFU]) at the burn wound site. BS animals were either untreated or treated with increasing concentrations (10(3) - 19(10) CFU) of attenuated donor E. coli encoding bactericidal proteins. The survival rate was monitored for 10 days. The ability of donor cells to significantly diminish AB levels in the burn wound 24 hours after injury was determined by quantitative cultures. Donor cells were highly effective in killing AB in vitro. In the burn sepsis model, 90% B group animals survived, and 40% to 50% BS animals survived with no treatment in 5 to 6 days. Treatment with donor cells at 10(10) to 10(6) provided significant survival advantage (P < .05). Quantitative cultures of burn wounds revealed that AB numbers increased from 3 x 10(4) CFU to 7.8 +/- 4.4 x 10(9) CFU in 24 hours in the untreated group. Single treatment with donor cells (10(10) CFU) significantly reduced AB in the burn wound to less than the levels seeded into the wound (1.23 +/- 0.5 x 10(4) CFU; P < .05). Taken together, these results indicate that this novel technology is an efficient method to control drug-resistant AB burn wound infections and prevent their systemic spread.


Assuntos
Acinetobacter baumannii/genética , Queimaduras/complicações , Farmacorresistência Bacteriana Múltipla , Sepse/microbiologia , Sepse/terapia , Transdução Genética , Animais , Conjugação Genética , Escherichia coli/patogenicidade , Terapia Genética/métodos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Plasmídeos , Transfecção
10.
J Bacteriol ; 187(1): 320-8, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15601716

RESUMO

FtsI (also called PBP3) of Escherichia coli is a transpeptidase required for synthesis of peptidoglycan in the division septum and is one of about a dozen division proteins that localize to the septal ring. FtsI comprises a short amino-terminal cytoplasmic domain, a single transmembrane helix (TMH), and a large periplasmic domain that encodes the catalytic (transpeptidase) activity. We show here that a 26-amino-acid fragment of FtsI is sufficient to direct green fluorescent protein to the septal ring in cells depleted of wild-type FtsI. This fragment extends from W22 to V47 and corresponds to the TMH. This is a remarkable finding because it is unusual [corrected] for a TMH to target a protein to a site more specific than the membrane. Alanine-scanning mutagenesis of the TMH identified several residues important for septal localization. These residues cluster on one side of an alpha-helix, which we propose interacts directly with another division protein to recruit FtsI to the septal ring.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Ligação às Penicilinas/química , Peptidoglicano Glicosiltransferase/química , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Citoplasma/química , Dados de Sequência Molecular , Periplasma/química
11.
Virology ; 326(1): 41-6, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15262493

RESUMO

Phage lambda DNA packaging is accompanied by prohead expansion, due to structural changes in gpE, the major capsid protein. Rearrangement of the gpE lattice creates binding sites for trimers of gpD, the head stabilization protein. lambda-Like phage 21's shp gene is homologous to lambda's D gene. gpD and gpShp share 49% amino acid identity. To ask whether gpShp could stabilize the lambda head shell, we replaced lambda's D gene with shp, creating lambda shp. Unlike lambda or 21, lambda shp was strictly dependent on the presence of 10(-2) M Mg2+, and lambda shp virions were very sensitive to chelating agents. Density gradient studies indicated that the lambda gpE lattice was underpopulated with gpShp. gpD's N-terminus has been proposed to contact gpE, and we found that lambda D/shp, which produces a chimeric protein with the N-terminus of gpD and the C-terminus of gpShp, was Mg2+-independent and more stable than lambda shp.


Assuntos
Bacteriófago lambda/fisiologia , Genes Virais , Montagem de Vírus , Bacteriófago lambda/genética , Cátions Bivalentes , Magnésio , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...