Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 61(48): 11702-10, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23869957

RESUMO

Cereals are the most important crops in the world for both human consumption and animal feed. Improving their nutritional values, such as high protein content, will have significant implications, from establishing healthy lifestyles to helping remediate malnutrition problems worldwide. Besides providing a source of carbohydrate, grain is also a natural source of dietary fiber, vitamins, minerals, specific oils, and other disease-fighting phytocompounds. Even though cereal grains contain relatively little protein compared to legume seeds, they provide protein for the nutrition of humans and livestock that is about 3 times that of legumes. Most cereal seeds lack a few essential amino acids; therefore, they have imbalanced amino acid profiles. Lysine (Lys), threonine (Thr), methionine (Met), and tryptophan (Trp) are among the most critical and are a limiting factor in many grain crops for human nutrition. Tremendous research has been put into the efforts to improve these essential amino acids. Development of high protein content can be outlined in four different approaches through manipulating seed protein bodies, modulating certain biosynthetic pathways to overproduce essential and limiting amino acids, increasing nitrogen relocation to the grain through the introduction of transgenes, and exploiting new genetic variance. Various technologies have been employed to improve protein content including conventional and mutational breeding, genetic engineering, marker-assisted selection, and genomic analysis. Each approach involves a combination of these technologies. Advancements in nutrigenomics and nutrigenetics continue to improve public knowledge at a rapid pace on the importance of specific aspects of food nutrition for optimum fitness and health. An understanding of the molecular basis for human health and genetic predisposition to certain diseases through human genomes enables individuals to personalize their nutritional requirements. It is critically important, therefore, to improve grain protein quality. Highly nutritious grain can be tailored to functional foods to meet the needs for both specific individuals and human populations as a whole.


Assuntos
Grão Comestível/química , Grão Comestível/genética , Alimentos Geneticamente Modificados , Proteínas de Plantas/análise , Cruzamento , Grão Comestível/metabolismo , Engenharia Genética , Humanos , Mutação , Valor Nutritivo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Recent Pat DNA Gene Seq ; 3(3): 219-25, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19673700

RESUMO

Improving essential amino acids or protein content, along with other phytonutrients in the food crops, will affect a great portion of the world population, especially in developing countries where rice grain is the main source of protein. Malnutrition, including deficiencies in protein/energy, iron/zinc, vitamin A, and iodine, causes a total 24,000 deaths per day worldwide. The problem is severe where rice is the major staple food. Protein deficiency involves both the quantity (amount) and quality (the content in essential amino acids) of the dietary protein. Various interventions, such as distribution, fortification, dietary diversification, and measures against infectious diseases, have been applied to reduce deficiency disorders. The problem, however, remains unsolved. Developing genetically novel lines with elevated content of essential amino acids together with other health benefit components becomes more feasible for the enhancement of breeding techniques, genomics, molecular manipulations, and genetic engineering. Advancement in basic genetic and genetic engineering has resulted in successful enrichment of some essential amino acids, such as lysine (Lys), tryptophan (Trp), and methionine (Met). Successful genetic enhancement has been largely restricted to the maize crop through enrichment of grain Lys and to some extends Trp. Since rice is the main source of calories and protein intake for billions of people, enhancing essential amino acids in rice represents a tremendous challenge. This paper will discuss and review the current status in basic genetics, molecular genetics, and genetic engineering associated with the enhancement of amino acids and other health benefit components in major grain crop improvement. Patents and future efforts associated with enhancing nutritional quality of the grain will also be reviewed as a concerted effort to solve the malnutrition problem and improve the quality of life worldwide.


Assuntos
Aminoácidos Essenciais/metabolismo , Produtos Agrícolas/química , Grão Comestível/química , Alimento Funcional , Aminoácidos Essenciais/química , Aminoácidos Essenciais/genética , Animais , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...