Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36672261

RESUMO

Mechanoregulation of cell-extracellular matrix (ECM) interactions are crucial for dictating pluripotent stem cell differentiation. However, not all pluripotent cells respond homogeneously which results in heterogeneous cell populations. When cells, such as mouse epiblast stem cells (EpiSCs), are cultured in clusters, the heterogeneity effect during differentiation is even more pronounced. While past studies implicated variations in signaling pathways to be the root cause of heterogeneity, the biophysical aspects of differentiation have not been thoroughly considered. Here, we demonstrate that the heterogeneity of EpiSC differentiation arises from differences in the colony size and varying degrees of interactions between cells within the colonies and the ECM. Confocal imaging demonstrates that cells in the colony periphery established good contact with the surface while the cells in the colony center were separated by an average of 1-2 µm from the surface. Traction force measurements of the cells within the EpiSC colonies show that peripheral cells generate large tractions while the colony center cells do not. A finite element modeling of EpiSC colonies shows that tractions generated by the cells at the colony periphery lift off the colony center preventing the colony center from undergoing differentiation. Together, our results demonstrate a biophysical regulation of heterogeneous EpiSC colony differentiation.


Assuntos
Células-Tronco Pluripotentes , Camundongos , Animais , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Camadas Germinativas/metabolismo , Transdução de Sinais
2.
J Phys D Appl Phys ; 54(10)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-34483365

RESUMO

Line-scanning confocal microscopy provides high imaging speed and moderate optical sectioning strength, which makes it a useful tool for imaging various biospecimens ranging from living cells to fixed tissues. Conventional line-scanning systems have only used a single excitation line and slit, and thus have not fully exploited benefits of parallelization. Here we investigate the optical performance of multi-line scanning confocal microscopy (mLS) by employing a digital micro-mirror that provides programmable patterns of the illumination beam and the detection slit. Through experimental results and optical simulations, we assess the depth discrimination of mLS under different optical parameters and compare it with multi-point systems such as scanning disk confocal microscopy (SDCM). Under the same illumination duty cycle, we find that mLS has better optical sectioning than SDCM at a high degree of parallelization. The optimized mLS provides a low photobleaching rate and video-rate imaging while its optical sectioning is similar to single line-scanning confocal microscopy.

3.
J Vis Exp ; (146)2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009011

RESUMO

Single-molecule imaging has greatly advanced our understanding of molecular mechanisms in biological studies. However, it has been challenging to obtain large field-of-view, high-contrast images in thick cells and tissues. Here, we introduce highly inclined swept tile (HIST) microscopy that overcomes this problem. A pair of cylindrical lenses was implemented to generate an elongated excitation beam that was scanned over a large imaging area via a fast galvo mirror. A 4f configuration was used to position optical components. A scientific complementary metal-oxide semiconductor camera detected the fluorescence signal and blocked the out-of-focus background with a dynamic confocal slit synchronized with the beam sweeping. We present a step-by-step instruction on building the HIST microscope with all basic components.


Assuntos
Microscopia/instrumentação , Imagem Individual de Molécula/instrumentação , Lentes , Óxidos , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...