Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 108(10): 2626-2638, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078252

RESUMO

BCL-XL and BCL-2 are key anti-apoptotic proteins and validated cancer targets. 753B is a novel BCL-XL/BCL-2 proteolysis targeting chimera (PROTAC) that targets both BCL-XL and BCL-2 to the von Hippel-Lindau (VHL) E3 ligase, leading to BCLX L/BCL-2 ubiquitination and degradation selectively in cells expressing VHL. Because platelets lack VHL expression, 753B spares on-target platelet toxicity caused by the first-generation dual BCL-XL/BCL-2 inhibitor navitoclax (ABT-263). Here, we report pre-clinical single-agent activity of 753B against different leukemia subsets. 753B effectively reduced cell viability and induced dose-dependent degradation of BCL-XL and BCL-2 in a subset of hematopoietic cell lines, acute myeloid leukemia (AML) primary samples, and in vivo patient-derived xenograft AML models. We further demonstrated the senolytic activity of 753B, which enhanced the efficacy of chemotherapy by targeting chemotherapy-induced cellular senescence. These results provide a pre-clinical rationale for the utility of 753B in AML therapy, and suggest that 753B could produce an added therapeutic benefit by overcoming cellular senescence-induced chemoresistance when combined with chemotherapy.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Proteína bcl-X/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Senescência Celular , Linhagem Celular Tumoral , Apoptose
3.
Nat Commun ; 13(1): 2228, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484100

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with poor outcomes with conventional therapy. Nearly 100% of BPDCNs overexpress interleukin 3 receptor subunit alpha (CD123). Given that CD123 is differentially expressed on the surface of BPDCN cells, it has emerged as an attractive therapeutic target. UCART123 is an investigational product consisting of allogeneic T cells expressing an anti-CD123 chimeric antigen receptor (CAR), edited with TALEN® nucleases. In this study, we examine the antitumor activity of UCART123 in preclinical models of BPDCN. We report that UCART123 have selective antitumor activity against CD123-positive primary BPDCN samples (while sparing normal hematopoietic progenitor cells) in the in vitro cytotoxicity and T cell degranulation assays; supported by the increased secretion of IFNγ by UCART123 cells when cultured in the presence of BPDCN cells. UCART123 eradicate BPDCN and result in long-term disease-free survival in a subset of primary patient-derived BPDCN xenograft mouse models. One potential challenge of CD123 targeting therapies is the loss of CD123 antigen through diverse genetic mechanisms, an event observed in one of three BPDCN PDX studied. In summary, these results provide a preclinical proof-of-principle that allogeneic UCART123 cells have potent anti-BPDCN activity.


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Doença Aguda , Animais , Células Dendríticas/metabolismo , Neoplasias Hematológicas/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Camundongos , Transtornos Mieloproliferativos/metabolismo , Neoplasias Cutâneas/patologia
5.
Signal Transduct Target Ther ; 7(1): 51, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35185150

RESUMO

Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2-selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Sistema de Sinalização das MAP Quinases , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas , Proteínas ras , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia
6.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34326171

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) stem cells (LSCs) are capable of surviving current standard chemotherapy and are the likely source of deadly, relapsed disease. While stem cell transplant serves as proof-of-principle that AML LSCs can be eliminated by the immune system, the translation of existing immunotherapies to AML has been met with limited success. Consequently, understanding and exploiting the unique immune-evasive mechanisms of AML LSCs is critical. METHODS: Analysis of stem cell datasets and primary patient samples revealed CD200 as a putative stem cell-specific immune checkpoint overexpressed in AML LSCs. Isogenic cell line models of CD200 expression were employed to characterize the interaction of CD200+ AML with various immune cell subsets both in vitro and in peripheral blood mononuclear cell (PBMC)-humanized mouse models. CyTOF and RNA-sequencing were performed on humanized mice to identify novel mechanisms of CD200-mediated immunosuppression. To clinically translate these findings, we developed a fully humanized CD200 antibody (IgG1) that removed the immunosuppressive signal by blocking interaction with the CD200 receptor while also inducing a potent Fc-mediated response. Therapeutic efficacy of the CD200 antibody was evaluated using both humanized mice and patient-derived xenograft models. RESULTS: Our results demonstrate that CD200 is selectively overexpressed in AML LSCs and is broadly immunosuppressive by impairing cytokine secretion in both innate and adaptive immune cell subsets. In a PBMC-humanized mouse model, CD200+ leukemia progressed rapidly, escaping elimination by T cells, compared with CD200- AML. T cells from mice with CD200+ AML were characterized by an abundance of metabolically quiescent CD8+ central and effector memory cells. Mechanistically, CD200 expression on AML cells significantly impaired OXPHOS metabolic activity in T cells from healthy donors. Importantly, CD200 antibody therapy could eliminate disease in the presence of graft-versus-leukemia in immune competent mice and could significantly improve the efficacy of low-intensity azacitidine/venetoclax chemotherapy in immunodeficient hosts. CONCLUSIONS: Overexpression of CD200 is a stem cell-specific marker that contributes to immunosuppression in AML by impairing effector cell metabolism and function. CD200 antibody therapy is capable of simultaneously reducing CD200-mediated suppression while also engaging macrophage activity. This study lays the groundwork for CD200-targeted therapeutic strategies to eliminate LSCs and prevent AML relapse.


Assuntos
Antígenos CD/metabolismo , Evasão da Resposta Imune/genética , Leucemia Mieloide Aguda/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD
7.
Sci Rep ; 8(1): 12083, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108242

RESUMO

Overexpression of REST has been implicated in brain tumors, ischemic insults, epilepsy, and movement disorders such as Huntington's disease. However, owing to the lack of a conditional REST overexpression animal model, the mechanism of action of REST overexpression in these disorders has not been established in vivo. We created a REST overexpression mouse model using the human REST (hREST) gene. Our results using these mice confirm that hREST expression parallels endogenous REST expression in embryonic mouse brains. Further analyses indicate that REST represses the dopamine receptor 2 (Drd2) gene, which encodes a critical nigrostriatal receptor involved in regulating movement, in vivo. Overexpression of REST using Drd2-Cre in adult mice results in increased REST and decreased DRD2 expression in the striatum, a major site of DRD2 expression, and phenocopies the spontaneous locomotion deficits seen upon global DRD2 deletion or specific DRD2 deletion from indirect-pathway medium spiny neurons. Thus, our studies using this mouse model not only reveal a new function of REST in regulating spontaneous locomotion but also suggest that REST overexpression in DRD2-expressing cells results in spontaneous locomotion deficits.


Assuntos
Corpo Estriado/metabolismo , Locomoção/fisiologia , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Proteínas Repressoras/metabolismo , Animais , Corpo Estriado/citologia , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Receptores de Dopamina D2/genética , Proteínas Repressoras/genética , Análise de Sequência de RNA
8.
Neuro Oncol ; 20(9): 1207-1214, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-29660023

RESUMO

Background: Radiation-induced cognitive dysfunction is a significant side effect of cranial irradiation for brain tumors. Clinically, pediatric patients are more vulnerable than adults. However, the underlying mechanisms of dysfunction, including reasons for age dependence, are still largely unknown. Previous studies have focused on the loss of hippocampal neuronal precursor cells and deficits in memory. However, survivors may also experience deficits in attention, executive function, or other non-hippocampal-dependent cognitive domains. We hypothesized that brain irradiation induces age-dependent deficits in cortical synaptic plasticity. Methods: In vivo recordings were used to test neuronal plasticity along the direct pathway from the cornu ammonis 1 (CA1)/subicular region to the prefrontal cortex (PFC). Specifically, long-term potentiation (LTP) in the CA1/subicular-PFC pathway was assessed after cranial irradiation of juvenile and adult Sprague Dawley rats. We further assessed a potential role for glutamate toxicity by evaluating the potential neuroprotective effects of memantine. Results: LTP was greatly inhibited in both adult and juvenile animals at 3 days after radiation but returned to near-normal levels by 8 weeks-only in adult rats. Memantine given before, but not after, irradiation partially prevented LTP inhibition in juvenile and adult rats. Conclusion: Cranial radiation impairs neuroplasticity along the hippocampal-PFC pathway; however, its effects vary by age. Pretreatment with memantine offered protection to both juvenile and adult animals. Deficits in cortical plasticity may contribute to radiation-induced cognitive dysfunction, including deficits in attention and age-dependent sensitivity of such pathways, which may underlie differences in clinical outcomes between juveniles and adults after cranial irradiation.


Assuntos
Irradiação Craniana/efeitos adversos , Hipocampo/patologia , Memantina/farmacologia , Transtornos da Memória/patologia , Plasticidade Neuronal/efeitos da radiação , Neurônios/patologia , Córtex Pré-Frontal/patologia , Fatores Etários , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/efeitos da radiação , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/efeitos da radiação , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos da radiação , Lesões por Radiação/prevenção & controle , Ratos , Ratos Sprague-Dawley
9.
J Neurosci ; 35(45): 15097-112, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558781

RESUMO

Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21-Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21-Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21-Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes. SIGNIFICANCE STATEMENT: Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not mechanism based and its prognostic value is limited. Here, we identify a new mechanism in GBM (the miR-21-Sox2 axis) that can classify ∼50% of patients into two subtypes with distinct molecular, radiological, and pathological characteristics. Importantly, this classification can predict patient survival better than the currently used parameters. Further, analysis of the miR-21-Sox2 relationship in mouse neural stem cells and in the mouse brain at different developmental stages indicates that miR-21 and Sox2 are predominantly expressed in mutually exclusive patterns, suggesting a role in normal neural development.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/metabolismo , Glioblastoma/classificação , Glioblastoma/metabolismo , MicroRNAs/biossíntese , Fatores de Transcrição SOXB1/biossíntese , Animais , Biomarcadores Tumorais/biossíntese , Neoplasias Encefálicas/diagnóstico , Células Cultivadas , Glioblastoma/diagnóstico , Humanos , Masculino , Camundongos , Camundongos Nus , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida/tendências
10.
Reproduction ; 146(4): 363-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23884860

RESUMO

Ionizing radiation has been shown to arrest spermatogenesis despite the presence of surviving stem spermatogonia, by blocking their differentiation. This block is a result of damage to the somatic environment and is reversed when gonadotropins and testosterone are suppressed, but the mechanisms are still unknown. We examined spermatogonial differentiation and Sertoli cell factors that regulate spermatogonia after irradiation, during hormone suppression, and after hormone suppression combined with Leydig cell elimination with ethane dimethane sulfonate. These results showed that the numbers and cytoplasmic structure of Sertoli cells are unaffected by irradiation, only a few type A undifferentiated (Aund) spermatogonia and even fewer type A1 spermatogonia remained, and immunohistochemical analysis showed that Sertoli cells still produced KIT ligand (KITLG) and glial cell line-derived neurotrophic factor (GDNF). Some of these cells expressed KIT receptor, demonstrating that the failure of differentiation was not a result of the absence of the KIT system. Hormone suppression resulted in an increase in Aund spermatogonia within 3 days, a gradual increase in KIT-positive spermatogonia, and differentiation mainly to A3 spermatogonia after 2 weeks. KITL (KITLG) protein expression did not change after hormone suppression, indicating that it is not a factor in the stimulation. However, GDNF increased steadily after hormone suppression, which was unexpected since GDNF is supposed to promote stem spermatogonial self-renewal and not differentiation. We conclude that the primary cause of the block in spermatogonial development is not due to Sertoli cell factors such (KITL\GDNF) or the KIT receptor. As elimination of Leydig cells in addition to hormone suppression resulted in differentiation to the A3 stage within 1 week, Leydig cell factors were not necessary for spermatogonial differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células Intersticiais do Testículo/metabolismo , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Espermatogônias/fisiologia , Fator de Células-Tronco/metabolismo , Testosterona/farmacologia , Androgênios/farmacologia , Animais , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Técnicas Imunoenzimáticas , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos da radiação , Masculino , Ratos , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/efeitos da radiação , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Espermatogônias/efeitos dos fármacos , Espermatogônias/efeitos da radiação
11.
PLoS One ; 7(2): e32064, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348147

RESUMO

The prevalence of testicular germ cell tumors (TGCT), a common solid tissue malignancy in young men, has been annually increasing at an alarming rate of 3%. Since the majority of testicular cancers are derived from germ cells at the stage of transformation of primordial germ cell (PGC) into gonocytes, the increase has been attributed to maternal/fetal exposures to environmental factors. We examined the effects of an estrogen (diethylstilbestrol, DES), an antiandrogen (flutamide), or radiation on the incidence of testicular germ cell tumors in genetically predisposed 129.MOLF-L1 (L1) congenic mice by exposing them to these agents on days 10.5 and 11.5 of pregnancy. Neither flutamide nor DES produced noticeable increases in testis cancer incidence at 4 weeks of age. In contrast, two doses of 0.8-Gy radiation increased the incidence of TGCT from 45% to 100% in the offspring. The percentage of mice with bilateral tumors, weights of testes with TGCT, and the percentage of tumors that were clearly teratomas were higher in the irradiated mice than in controls, indicating that irradiation induced more aggressive tumors and/or more foci of initiation sites in each testis. This radiation dose did not disrupt spermatogenesis, which was qualitatively normal in tumor-free testes although they were reduced in size. This is the first proof of induction of testicular cancer by an environmental agent and suggests that the male fetus of women exposed to radiation at about 5-6 weeks of pregnancy might have an increased risk of developing testicular cancer. Furthermore, it provides a novel tool for studying the molecular and cellular events of testicular cancer pathogenesis.


Assuntos
Feto/efeitos da radiação , Efeitos Tardios da Exposição Pré-Natal , Neoplasias Testiculares/etiologia , Antagonistas de Androgênios/toxicidade , Animais , Dietilestilbestrol/toxicidade , Estrogênios não Esteroides/toxicidade , Feminino , Flutamida/toxicidade , Predisposição Genética para Doença , Masculino , Exposição Materna , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética
12.
Toxicol Sci ; 126(2): 545-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22273744

RESUMO

Previous studies with Lewis/Brown-Norway (BN) F1 hybrid rats indicated that spermatogenesis was much more sensitive to ionizing radiation than in the widely studied outbred Sprague Dawley stock, suggesting that there were genetically based differences; however, the relative sensitivities of various inbred strains had not been established. As a first step to defining the genes responsible for these differences, we compared the sensitivities of seven rat strains to radiation damage of spermatogenesis. Recovery of spermatogenesis was examined 10 weeks after 5-Gy irradiation of seven strains (BN, Lewis, Long-Evans, Wistar Kyoto, spontaneously hypertensive [SHR], Fischer 344, and Sprague Dawley). The percentages of tubules containing differentiated cells and testicular sperm counts showed that BN and Lewis were most sensitive to radiation (< 2% of tubules recovered, < 2 × 10(5) late spermatids per testis), Long-Evans, Wistar Kyoto, Fischer, and SHR were more resistant, and Sprague Dawley was the most resistant (98% of tubules recovered, 2 × 10(7) late spermatids per testis). Although increases in intratesticular testosterone levels and interstitial fluid volume after irradiation had been suggested as factors inhibiting recovery of spermatogenesis, neither appeared to correlate with the radiation sensitivity of spermatogenesis in these strains. In all strains, the atrophic tubules without differentiated germ cells nevertheless showed the presence of type A spermatogonia, indicating that their differentiation was blocked. Thus, we conclude that the differences in radiation sensitivity of recovery of spermatogenesis between rat strains of different genetic backgrounds can be accounted for by differences in the extent of the radiation-induced block of spermatogonial differentiation.


Assuntos
Tolerância a Radiação , Espermatogênese/efeitos da radiação , Animais , Masculino , Ratos , Ratos Endogâmicos , Especificidade da Espécie , Contagem de Espermatozoides
13.
Reprod Toxicol ; 32(4): 395-406, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22001253

RESUMO

Spermatogenesis is sensitive to the chemotherapeutic drug cyclophosphamide, which decreases the patients' sperm count. Since the recovery of fertility is dependent on regeneration from stem cells, in the present study we evaluated the ability of cyclophosphamide-exposed stem spermatogonia from mice to regenerate spermatogenesis in situ and after transplantation. When seven doses of cyclophosphamide were given at 4-day intervals, the differentiating germ cells were largely eliminated but ~50% of the undifferentiated type A spermatogonia remained. We monitored the recovery and found that sperm production recovered to 64% of control within the time expected. When the cyclophosphamide-surviving spermatogonia were transplanted into recipient mice, recovery of spermatogenesis from the cyclophosphamide-exposed donor cells was observed, but was reduced when compared to cells from cryptorchid donors. Thus, multidose regimens of cyclophosphamide did not eliminate the stem spermatogonia, but resulted in cell loss and residual damage.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Ciclofosfamida/administração & dosagem , Espermatogênese/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Apoptose , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Epitélio Seminífero/citologia , Contagem de Espermatozoides , Espermatogônias/citologia , Espermatogônias/transplante , Testículo/citologia
14.
Endocrinology ; 152(9): 3504-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21733828

RESUMO

Why both testosterone (T) suppression and cryptorchidism reverse the block in spermatogonial differentiation in adult mice homozygous for the juvenile spermatogonial depletion (jsd) mutation has been a conundrum. To resolve this conundrum, we analyzed interrelations between T suppression, testicular temperature, and spermatogonial differentiation and used in vitro techniques to separate the effects of the two treatments on the spermatogonial differentiation block in jsd mice. Temporal analysis revealed that surgical cryptorchidism rapidly stimulated spermatogonial differentiation whereas androgen ablation treatment produced a delayed and gradual differentiation. The androgen suppression caused scrotal shrinkage, significantly increasing the intrascrotal temperature. When serum T or intratesticular T (ITT) levels were modulated separately in GnRH antagonist-treated mice by exogenous delivery of T or LH, respectively, the inhibition of spermatogonial differentiation correlated with the serum T and not with ITT levels. Thus, the block must be caused by peripheral androgen action. When testicular explants from jsd mice were cultured in vitro at 32.5 C, spermatogonial differentiation was not observed, but at 37 C significant differentiation was evident. In contrast, addition of T to the culture medium did not block the stimulation of spermatogonial differentiation at 37 C, and androgen ablation with aminoglutethimide and hydroxyflutamide did not stimulate differentiation at 32.5 C, suggesting that T had no direct effect on spermatogonial differentiation in jsd mice. These data show that elevation of temperature directly overcomes the spermatogonial differentiation block in adult jsd mice and that T suppression acts indirectly in vivo by causing scrotal regression and thereby elevating the testicular temperature.


Assuntos
Androgênios/farmacologia , Temperatura Corporal/efeitos dos fármacos , Ribonucleoproteínas Nucleolares Pequenas/genética , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testosterona/farmacologia , Animais , Temperatura Corporal/fisiologia , Criptorquidismo , Homozigoto , Hormônio Luteinizante/farmacologia , Masculino , Camundongos , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Escroto/efeitos dos fármacos , Escroto/fisiologia , Espermatogênese/fisiologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/fisiologia , Testículo/fisiologia
15.
Biol Reprod ; 85(4): 823-33, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21653891

RESUMO

Despite numerous observations of the effects of estrogens on spermatogenesis, identification of estrogen-regulated genes in the testis is limited. Using rats in which irradiation had completely blocked spermatogonial differentiation, we previously showed that testosterone suppression with gonadotropin-releasing hormone-antagonist acyline and the antiandrogen flutamide stimulated spermatogenic recovery and that addition of estradiol (E2) to this regimen accelerated this recovery. We report here the global changes in testicular cell gene expression induced by the E2 treatment. By minimizing the changes in other hormones and using concurrent data on regulation of the genes by these hormones, we were able to dissect the effects of estrogen on gene expression, independent of gonadotropin or testosterone changes. Expression of 20 genes, largely in somatic cells, was up- or downregulated between 2- and 5-fold by E2. The unexpected and striking enrichment of transcripts not corresponding to known genes among the E2-downregulated probes suggested that these might represent noncoding mRNAs; indeed, we have identified several as miRNAs and their potential target genes in this system. We propose that genes for which expression levels are altered in one direction by irradiation and in the opposite direction by both testosterone suppression and E2 treatment are candidates for controlling the block in differentiation. Several genes, including insulin-like 3 (Insl3), satisfied those criteria. If they are indeed involved in the inhibition of spermatogonial differentiation, they may be candidate targets for treatments to enhance recovery of spermatogenesis following gonadotoxic exposures, such as those resulting from cancer therapy.


Assuntos
Estradiol/uso terapêutico , Estrogênios/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Testículo/efeitos dos fármacos , Testículo/metabolismo , Antagonistas de Androgênios/uso terapêutico , Animais , Cruzamentos Genéticos , Quimioterapia Combinada , Flutamida/uso terapêutico , Raios gama , Regulação da Expressão Gênica/efeitos da radiação , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/uso terapêutico , Insulina/genética , Insulina/metabolismo , Masculino , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oligopeptídeos/uso terapêutico , Proteínas/genética , Proteínas/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Testículo/patologia , Testículo/efeitos da radiação , Testosterona/antagonistas & inibidores
16.
Biol Reprod ; 84(2): 400-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21312389

RESUMO

Spermatogenesis is dependent primarily on testosterone action on the Sertoli cells, but the molecular mechanisms have not been identified. Attempts to identify testosterone-regulated target genes in Sertoli cells have used microarray analysis of gene expression in mice lacking the androgen receptor (AR) in Sertoli cells (SCARKO) and wild-type mice, but the analyses have been complicated both by alteration of germ cell composition of the testis when pubertal or adult mice were used and by differences in Sertoli-cell gene expression from the expression in adults when prepubertal mice were used. To overcome these limitations and identify AR-regulated genes in adult Sertoli cells, we compared gene expression in adult jsd (Utp14b jsd/jsd, juvenile spermatogonial depletion) mouse testes and with that in SCARKO-jsd mouse testes, since their cellular compositions are essentially identical, consisting of only type A spermatogonia and somatic cells. Microarray analysis identified 157 genes as downregulated and 197 genes as upregulated in the SCARKO-jsd mice compared to jsd mice. Some of the AR-regulated genes identified in the previous studies, including Rhox5, Drd4, and Fhod3, were also AR regulated in the jsd testes, but others, such as proteases and components of junctional complexes, were not AR regulated in our model. Surprisingly, a set of germ cell­specific genes preferentially expressed in differentiated spermatogonia and meiotic cells, including Meig1, Sycp3, and Ddx4, were all upregulated about 2-fold in SCARKO-jsd testes. AR-regulated genes in Sertoli cells must therefore be involved in the regulation of spermatogonial differentiation, although there was no significant differentiation to spermatocytes in SCARKO-jsd mice. Further gene ontogeny analysis revealed sets of genes whose changes in expression may be involved in the dislocation of Sertoli cell nuclei in SCARKO-jsd testes.


Assuntos
Expressão Gênica , Mutação , Receptores Androgênicos/deficiência , Ribonucleoproteínas Nucleolares Pequenas/genética , Células de Sertoli/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA , Feminino , Masculino , Meiose , Camundongos , Camundongos Knockout , Análise em Microsséries , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Células de Sertoli/citologia , Espermatócitos/citologia , Espermatogônias/citologia , Testículo , Regulação para Cima
17.
Biol Reprod ; 83(5): 759-66, 2010 11.
Artigo em Inglês | MEDLINE | ID: mdl-20650881

RESUMO

Spermatogenesis is dependent primarily on testosterone action on the Sertoli cells, but the molecular mechanisms have not been identified. Attempts to identify testosterone-regulated target genes in Sertoli cells have used microarray analysis of gene expression in mice lacking the androgen receptor (AR) in Sertoli cells (SCARKO) and wild-type mice, but the analyses have been complicated both by alteration of germ cell composition of the testis when pubertal or adult mice were used and by differences in Sertoli-cell gene expression from the expression in adults when prepubertal mice were used. To overcome these limitations and identify AR-regulated genes in adult Sertoli cells, we compared gene expression in adult jsd (Utp14b(jsd/jsd), juvenile spermatogonial depletion) mouse testes and with that in SCARKO-jsd mouse testes, since their cellular compositions are essentially identical, consisting of only type A spermatogonia and somatic cells. Microarray analysis identified 157 genes as downregulated and 197 genes as upregulated in the SCARKO-jsd mice compared to jsd mice. Some of the AR-regulated genes identified in the previous studies, including Rhox5, Drd4, and Fhod3, were also AR regulated in the jsd testes, but others, such as proteases and components of junctional complexes, were not AR regulated in our model. Surprisingly, a set of germ cell-specific genes preferentially expressed in differentiated spermatogonia and meiotic cells, including Meig1, Sycp3, and Ddx4, were all upregulated about 2-fold in SCARKO-jsd testes. AR-regulated genes in Sertoli cells must therefore be involved in the regulation of spermatogonial differentiation, although there was no significant differentiation from spermatocytes in SCARKO-jsd mice. Further gene ontogeny analysis revealed sets of genes whose changes in expression may be involved in the dislocation of Sertoli cell nuclei in SCARKO-jsd testes.


Assuntos
Regulação da Expressão Gênica , Receptores Androgênicos/fisiologia , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteínas Nucleolares Pequenas/genética , Testículo/citologia , Testículo/metabolismo , Testosterona/metabolismo
18.
J Leukoc Biol ; 88(5): 849-61, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20628068

RESUMO

DCs play critical roles in promotion of autoimmunity or immune tolerance as potent APCs. In our anti-GBM GN model, WKY rats develop severe T cell-mediated glomerular inflammation followed by fibrosis. A DC-like cell population (CD8αα(+)CD11c(+)MHC-II(+)ED1(-)) was identified in the inflamed glomeruli. Chimera experiments demonstrated that the CD8αα(+) cells were derived from BM. The CD8αα(+) cells infiltrated glomeruli at a late stage (Days 28-35), coincident with a rapid decline in glomerular inflammation before fibrosis. The CD8αα(+) cells isolated from inflamed glomeruli were able to migrate rapidly from the bloodstream into inflamed glomeruli but not into normal glomeruli, suggesting that the migration was triggered by local inflammation. Despite high-level expression of surface and cellular MHC class II molecules, in vitro experiments showed that this CD8αα(+) DC-like cell induced apoptosis but not proliferation in antigen-specific CD4(+) T cells from T cell lines or freshly isolated from lymph nodes; they were not able to do so in the absence of antigens, suggesting induction of apoptosis was antigen-specific. Furthermore, apoptotic T cells were detected in a large number in the glomeruli at Day 32, coincident with the infiltration of the cells into glomeruli, suggesting that the cells may also induce T cell apoptosis in vivo. A potential role of this CD8αα(+) DC-like population in peripheral immune tolerance and/or termination of autoimmune inflammation was discussed.


Assuntos
Células da Medula Óssea/imunologia , Antígenos CD8/análise , Células Dendríticas/imunologia , Inflamação/imunologia , Linfócitos T/imunologia , Animais , Apoptose/imunologia , Antígenos CD11/isolamento & purificação , Antígenos CD8/isolamento & purificação , Morte Celular , Linhagem Celular , Sobrevivência Celular , Feminino , Glomérulos Renais/imunologia , Linfócitos/imunologia , Ratos , Ratos Wistar , Linfócitos T/citologia
19.
Toxicol Sci ; 117(1): 225-37, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20584762

RESUMO

Irradiation interrupts spermatogenesis and causes prolonged sterility in male mammals. Hormonal suppression treatment with gonadotropin-releasing hormone (GnRH) analogues has restored spermatogenesis in irradiated rats, but similar attempts were unsuccessful in irradiated mice, monkeys, and humans. In this study, we tested a stronger hormonal suppression regimen (the GnRH antagonist, acyline, and plus flutamide) for efficacy both in restoring endogenous spermatogenesis and in enhancing colonization of transplanted stem spermatogonia in mouse testes irradiated with a total doses between 10.5 and 13.5 Gy. A 4-week hormonal suppression treatment, given immediately after irradiation, increased endogenous spermatogenic recovery 1.5-fold, and 11-week hormonal suppression produced twofold increases compared with sham-treated irradiated controls. Furthermore, 10-week hormonal suppression restored fertility from endogenous surviving spermatogonial stem cells in 90% of 10.5-Gy irradiated mice, whereas only 10% were fertile without hormonal suppression. Four- and 11-week hormonal suppression also enhanced spermatogenic development from transplanted stem spermatogonia in irradiated recipient mice, by 3.1- and 4.8-fold, respectively, compared with those not given hormonal treatment. Moreover, the 10-week hormonal suppression regimen, but not a sham treatment, restored fertility of some 13.5-Gy irradiated recipient mice from donor-derived spermatogonial stem cells. This is the first report of hormonal suppression inducing recovery of endogenous spermatogenesis and fertility in a mouse model treated with anticancer agents. The combination of spermatogonial transplantation with hormonal suppression should be investigated as a treatment to restore fertility in young men after cytotoxic cancer therapy.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Hormônio Liberador de Gonadotropina/uso terapêutico , Infertilidade Masculina/terapia , Espermatogônias/transplante , Testículo/efeitos da radiação , Animais , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogênese , Testosterona/sangue
20.
Biol Reprod ; 82(1): 54-65, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19684331

RESUMO

Although gonadotropins and androgen are required for normal spermatogenesis and both testosterone and follicle-stimulating hormone (FSH) are responsible for the inhibition of spermatogonial differentiation that occurs in irradiated rats, it has been difficult to identify the specific genes involved. To study specific hormonally regulated changes in somatic cell gene expression in the testis that may be involved in these processes, without the complication of changing populations of germ cells, we used irradiated LBNF(1) rats, the testes of which contain almost exclusively somatic cells except for a few type A spermatogonia. Three different groups of these rats were treated with various combinations of gonadotropin-releasing hormone antagonist, an androgen receptor antagonist (flutamide), testosterone, and FSH, and we compared the gene expression levels 2 wk later to those of irradiated-only rats by microarray analysis. By dividing the gene expression patterns into three major patterns and 11 subpatterns, we successfully distinguished, in a single study, the genes that were specifically regulated by testosterone, by luteinizing hormone (LH), and by FSH from the large number of genes that were not hormonally regulated in the testis. We found that hormones produced more dramatic upregulation than downregulation of gene expression: Testosterone had the strongest upregulatory effect, LH had a modest but appreciable upregulatory effect, and FSH had a minor upregulatory effect. We also separately identified the somatic cell genes that were chronically upregulated by irradiation. Thus, the present study identified gene expression changes that may be responsible for hormonal action on somatic cells to support normal spermatogenesis and the hormone-mediated block in spermatogonial development after irradiation.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica , Hormônio Luteinizante/metabolismo , Testículo/metabolismo , Testosterona/farmacologia , Animais , Flutamida/farmacologia , Raios gama , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Células Germinativas/efeitos da radiação , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Oligopeptídeos/farmacologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/efeitos dos fármacos , Testículo/efeitos da radiação , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...