Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 2: 227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240265

RESUMO

Proper regulation of epigenetic states of chromatin is crucial to achieve tissue-specific gene expression during embryogenesis. The lung-specific gene products, surfactant proteins B (SP-B) and C (SP-C), are synthesized in alveolar epithelial cells and prevent alveolar collapse. Epigenetic regulation of these surfactant proteins, however, remains unknown. Here we report that MCRIP1, a regulator of the CtBP transcriptional co-repressor, promotes the expression of SP-B and SP-C by preventing CtBP-mediated epigenetic gene silencing. Homozygous deficiency of Mcrip1 in mice causes fatal respiratory distress due to abnormal transcriptional repression of these surfactant proteins. We found that MCRIP1 interferes with interactions of CtBP with the lung-enriched transcriptional repressors, Foxp1 and Foxp2, thereby preventing the recruitment of the CtBP co-repressor complex to the SP-B and SP-C promoters and maintaining them in an active chromatin state. Our findings reveal a molecular mechanism by which cells prevent inadvertent gene silencing to ensure tissue-specific gene expression during organogenesis.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Animais , Linhagem Celular Tumoral , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Epitélio/patologia , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/metabolismo , Insuficiência Respiratória/metabolismo , Insuficiência Respiratória/patologia
2.
Mol Cell ; 58(1): 35-46, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25728771

RESUMO

The ERK pathway not only upregulates growth-promoting genes, but also downregulates anti-proliferative and tumor-suppressive genes. In particular, ERK signaling contributes to repression of the E-cadherin gene during epithelial-mesenchymal transition (EMT). The CtBP transcriptional co-repressor is also involved in gene silencing of E-cadherin. However, the functional relationship between ERK signaling and CtBP is unknown. Here, we identified an ERK substrate, designated MCRIP1, which bridges ERK signaling and CtBP-mediated gene silencing. CtBP is recruited to promoter elements of target genes by interacting with the DNA-binding transcriptional repressor ZEB1. We found that MCRIP1 binds to CtBP, thereby competitively inhibiting CtBP-ZEB1 interaction. When phosphorylated by ERK, MCRIP1 dissociates from CtBP, allowing CtBP to interact with ZEB1. In this manner, the CtBP co-repressor complex is recruited to, and silences, the E-cadherin promoter by inducing chromatin modifications. Our findings reveal a molecular mechanism underlying ERK-induced epigenetic gene silencing during EMT and its dysregulation in cancer.


Assuntos
Oxirredutases do Álcool/genética , Caderinas/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Caderinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inativação Gênica , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Dados de Sequência Molecular , Fosforilação , Plasmídeos/química , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Homeobox 1 de Ligação a E-box em Dedo de Zinco
3.
Mol Cell Biol ; 34(1): 30-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24164895

RESUMO

Hypoxia-inducible factor 1 (HIF-1) plays a key role in the cellular adaptation to hypoxia. Although HIF-1 is usually strongly suppressed by posttranslational mechanisms during normoxia, HIF-1 is active and enhances tumorigenicity in malignant tumor cells that express the membrane protease MT1-MMP. The cytoplasmic tail of MT1-MMP, which can bind a HIF-1 suppressor protein called factor inhibiting HIF-1 (FIH-1), promotes inhibition of FIH-1 by Mint3 during normoxia. To explore possible links between HIF-1 activation by MT1-MMP/Mint3 and tumor growth signals, we surveyed a panel of 252 signaling inhibitors. The mTOR inhibitor rapamycin was identified as a possible modulator, and it inhibited the mTOR-dependent phosphorylation of Mint3 that is required for FIH-1 inhibition. A mutant Mint3 protein that cannot be phosphorylated exhibited a reduced ability to inhibit FIH-1 and promoted tumor formation in mice. These data suggest a novel molecular link between the important hub proteins MT1-MMP and mTOR that contributes to tumor malignancy.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antibióticos Antineoplásicos/farmacologia , Carbazóis/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Fator 1 Induzível por Hipóxia/genética , Immunoblotting , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Transplante Heterólogo
4.
PLoS One ; 7(4): e35590, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22523603

RESUMO

Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress.


Assuntos
Adaptação Fisiológica/genética , Hipóxia Celular/fisiologia , RNA Interferente Pequeno/genética , Adaptação Fisiológica/efeitos dos fármacos , Hipóxia Celular/genética , Técnicas de Silenciamento de Genes , Testes Genéticos , Estudo de Associação Genômica Ampla , Biblioteca Genômica , Humanos , Oxigênio/farmacologia , Interferência de RNA , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...