Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705415

RESUMO

Short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) have garnered significant attention because they have persistence and potential toxicity, and can undergo long-distance transport. Chlorinated paraffins (CPs) inhaled in the size-fractionated particulate phase and gas phase can carry different risks to human health due to their ability to accumulate in different regions of the respiratory tract and exhibit varying deposition efficiencies. In our study, large-volume ambient air samples in both the size-fractionated particulate phase (Dp < 1.0 µm, 1.0-2.5 µm, 2.5-10 µm, and Dp ≥ 10 µm) and gas phase were collected simultaneously in Beijing using an active sampler. The overall levels of SCCPs and MCCPs were relatively high, the ranges being 57-881 and 30-385 ng/m3, respectively. SCCPs tended to be partitioned in the gas phase (on average 75% of the ΣSCCP concentration), while MCCPs tended to be partitioned in the particulate phase (on average 62% of the ΣMCCP concentration). Significant correlations were discovered between the logarithm-transformed gas-particle partition coefficients (KP) and predicted subcooled vapor pressures (PL0) (p < 0.01 for SCCPs and MCCPs) and between the logarithm-transformed KP values and octanol-air partition coefficients (KOA) (p < 0.01 for SCCPs and MCCPs). Thus, the slopes indicated that organic matter absorption was the dominant process involved in gas-particle partitioning. We used the ICRP model to calculate deposition concentrations for particulate-associated CPs in head airways region (15.6-71.4 ng/m³), tracheobronchial region (0.8-4.8 ng/m³), and alveolar region (5.1-21.9 ng/m³), then combined these concentrations with the CP concentrations in the gas phase to calculate estimated daily intakes (EDIs) for inhalation. The EDIs for SCCPs and MCCPs through inhalation of ambient air for the all-ages group were 67.5-184.2 ng/kg/day and 19.7-53.7 ng/kg/day, respectively. The results indicated that SCCPs and MCCPs in ambient air do not currently pose strong risks to human health in the study area.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Hidrocarbonetos Clorados , Parafina , Tamanho da Partícula , Material Particulado , Parafina/análise , Poluentes Atmosféricos/análise , Humanos , Material Particulado/análise , Hidrocarbonetos Clorados/análise , Medição de Risco , Exposição por Inalação/análise , Exposição por Inalação/estatística & dados numéricos , Pequim , Halogenação , Gases/análise
2.
Sci Total Environ ; 928: 172459, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615780

RESUMO

Liquid crystal monomers (LCMs) comprise a class of organic pollutants that have garnered considerable attention because of their dioxin-like toxicity (i.e., modulation of genes) and presence in various environments. However, limited information about the identities, occurrence, and distribution of LCMs has highlighted an urgent need for a high-throughput and sensitive analytical method. In this study, we developed and validated a rapid, simple, sensitive method that involves minimal solvent consumption. The method was applied for the simultaneous detection and identification of 78 LCMs in atmospheric total suspended particulate samples (dae < 100 µm) using gas chromatography coupled with triple quadrupole mass spectrometry. The results showed high degrees of linearity with correlation coefficients >0.995 in the concentration range of 5.0-500 ng/mL. The instrumental detection limits ranged from 0.7 to 5.3 pg, and the method detection limits ranged from 0.1 to 0.9 pg/m3. The accuracy of the method was between 70 % and 130 % for most analytes, and the relative standard deviations of six replicates were <15 % at three levels of spiking (10, 50, and 200 ng/mL). The developed analytical method was applied to analyze real air particulate samples from Beijing, China. Overall, 45 LCMs ranged from 65.5 to 145.7 pg/m3, with a mean concentration of 92.5 pg/m3. Among them, (trans,trans)-4-propyl-4'-ethenyl-1,1'-bicyclohexane (PVB) was the most abundant, with an average concentration of 33.6 pg/m3. The total estimated daily intakes of LCMs for adults and children were 15.6 and 46.6 pg/kg bw/day, respectively. Accordingly, the method described herein is suitable for quantifying LCMs in atmospheric particulate samples. This study will be valuable for investigating LCM environmental occurrence, behaviors, and risk assessments.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Cristais Líquidos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pequim , Material Particulado/análise
3.
Chemosphere ; 349: 140856, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048831

RESUMO

Chlorinated paraffins (CPs) can accumulate in sediment and pose risks to ecological systems and human health. The Haihe River Basin is one of the seven main river basins in China and is mainly in the Beijing-Tianjin-Hebei region, which is densely populated and very urbanized. There is therefore a high probability of CP pollution in the Haihe River Basin. However, CP pollution and the environmental risks posed by CPs in the Haihe River are not well understood. In this study, the concentrations of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) in sediment from six rivers in the Haihe River Basin system were determined using two-dimensional gas chromatography electron-capture negative ionization mass spectrometry. The total SCCP and MCCP concentrations in the sediment samples ranged from 131.83 to 1767.71 and from 89.72 to 1442.82 ng/g dry weight, respectively. The total organic carbon content did not significantly correlate with the CP concentrations. The dominant SCCP congener groups were C10Cl6-7 and the dominant MCCP congener groups were C14Cl7-8. Significant relationships (R = 0.700, p < 0.05) were found between the SCCP and MCCP concentrations, indicating that SCCPs and MCCPs may have similar sources. Hierarchical cluster analysis and principal component analysis indicated that sediment in the study area was contaminated with CPs through the use of the CP-42 and CP-52 commercial products in industrial processes and human activities. The ecological risks posed by CPs were assessed and SCCPs were found to pose high risks in the Yongding New River but moderate risks in the other rivers. MCCPs were found to pose minimal risks to the aquatic environment at most of the sampling points.


Assuntos
Hidrocarbonetos Clorados , Parafina , Humanos , Parafina/análise , Rios , Cromatografia Gasosa-Espectrometria de Massas , Monitoramento Ambiental/métodos , Hidrocarbonetos Clorados/análise , China , Medição de Risco
4.
J Hazard Mater ; 460: 132444, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660621

RESUMO

There is concern about the large amounts of aromatic compounds emitted during coking. Previous studies of coking emissions have been focused on polycyclic aromatic hydrocarbons, dioxin-like compounds, phenols, and volatile organic compounds, but previously unidentified compounds produced during coking may also harm human health. Here, the main pollutants in 69 soil samples from an abandoned coking plant were identified by non-target screening using two-dimensional gas chromatography time-of-flight mass spectrometry. Polycyclic aromatic hydrocarbons, long-chain alkanes, and thiophenes were dominant. High concentrations of thiophenes (benzothiophenes, dibenzothiophenes, and benzonaphtholthiophenes) were found. Quantitative analysis of 12 thiophenes (selected because of their concentrations and detection frequencies) was performed, and the concentrations were 0.03-647 µg/g dry weight, which were extremely high compared with concentrations in soil from uncontaminated sites and other industrial sites. Dibenzothiophene and benzo[b]naphtho[2,1-d]thiophene were dominant, accounting for 69% of the total thiophene concentration. Thiophene profiles in very contaminated areas were different from the profile in coal but similar to the profile in tar. Thiophenes in soil at the coking plant may have been supplied in tar leaks, wastewater, coke oven gases, and exhaust gases. A toxicity assessment indicated a strong likelihood of oxidative stress being induced by exposure to multiple thiophenes at the coking plant. The results suggest that thiophene emissions from coking plants should attract more attention than currently.


Assuntos
Coque , Hidrocarbonetos Policíclicos Aromáticos , Gases , Solo , Tiofenos/toxicidade
5.
Environ Sci Technol ; 57(14): 5580-5591, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36976867

RESUMO

Chlorinated paraffins (CPs) are used in many products, including soft poly(vinyl chloride) curtains, which are used in many indoor environments. Health hazards posed by CPs in curtains are poorly understood. Here, chamber tests and an indoor fugacity model were used to predict CP emissions from soft poly(vinyl chloride) curtains, and dermal uptake through direct contact was assessed using surface wipes. Short-chain and medium-chain CPs accounted for 30% by weight of the curtains. Evaporation drives CP migration, like for other semivolatile organic plasticizers, at room temperature. The CP emission rate to air was 7.09 ng/(cm2 h), and the estimated short-chain and medium-chain CP concentrations were 583 and 95.3 ng/m3 in indoor air 21.2 and 172 µg/g in dust, respectively. Curtains could be important indoor sources of CPs to dust and air. The calculated total daily CP intakes from air and dust were 165 ng/(kg day) for an adult and 514 ng/(kg day) for a toddler, and an assessment of dermal intake through direct contact indicated that touching just once could increase intake by 274 µg. The results indicated that curtains, which are common in houses, could pose considerable health risks through inhalation of and dermal contact with CPs.


Assuntos
Poluição do Ar em Ambientes Fechados , Hidrocarbonetos Clorados , Cloreto de Vinil , Exposição por Inalação/análise , Parafina/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Clorados/análise , Poeira/análise , China
6.
Chemosphere ; 297: 134230, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35257700

RESUMO

Short-chain (SC) and medium-chain (MC) chlorinated paraffins (CPs) are found widely in the environment. Little research into air-soil exchange of SCCPs and MCCPs has been performed. In this study, CP concentrations, congener group profiles, and air-soil exchange in a typical contaminated area were investigated. A total of 10 soil samples and 10 air samples were collected from Zhoushan, an island in China. The samples were analyzed by two-dimensional gas chromatography electron capture negative ionization mass spectrometry. The SCCP and MCCP concentrations in the soil samples were 72-3842 and 117-8819 ng/g, respectively, and the SCCP and MCCP concentrations in the air samples were 57-208 and 1.8-25 ng/m3, respectively. The highest CP concentrations in both soil and air were found in samples from near shipyards, possibly because of CPs being emitted from metal cutting fluids and marine paints used at the shipyards. C14-15Cl7-9 were the dominant CP congener groups in the soil samples. C10Cl6-7 were the dominant CP congener groups in the air samples. Chlorinated decane and undecane and penta-, hexa-, and hepta-chlorinated CPs were enriched in the air relative to the soil. These congeners may have been released from the commercial CP-42 and CP-52. The fugacity fractions (ffs) of 48 homologs decreased as Koa increased. The ffs indicated that SCCPs and MCCPs dominated deposition. The net air-soil exchange fluxes of CPs were 201-769 ng/(m2·h). A preliminary risk assessment indicated that CPs pose low ecological risk except at sampling site S7 and do not pose significant health risks.


Assuntos
Hidrocarbonetos Clorados , Solo , China , Meios de Cultura , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados/análise , Parafina/análise
7.
Environ Pollut ; 293: 118456, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740736

RESUMO

Chlorinated paraffins (CPs) are used as additives in metal processing in the metal smelting industry. Data on CPs in the environment near metal smelting plants are limited. The objectives of this study were to investigate the concentrations and congener profiles of CPs in soil around factories in a non-ferrous metal recycling park located in Hebei, China, and to investigate human exposure to CPs in the soil. The concentrations of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were determined by two-dimensional gas chromatography with electron capture negative ionization mass spectrometry. The SCCP and MCCP concentrations in the soil samples were 121-5159 ng/g and 47-6079 ng/g, respectively. Generally, the CP concentrations in soils around the factories were relatively high compared with those near other contaminated sites and in rural and urban areas. There were significant correlations between the MCCP concentrations, some SCCP carbon homologs, and the total organic carbon content (p < 0.05). The major SCCP and MCCP congener groups were C10Cl6-7 and C15-16Cl5, respectively. Hierarchical cluster analysis and principal component analysis indicated that SCCPs and MCCPs in the soil might originate from extreme pressure additives containing CP-42 and CP-52 and CP-containing waste material from the factories. The concentrations in two samples collected near a metal recycling factory posed a moderate risk according to a risk assessment conducted using risk quotients. Further risk assessment showed that the CPs concentrations in soil did not pose significant health risks to either children or adults.


Assuntos
Hidrocarbonetos Clorados , Parafina , Adulto , Criança , China , Monitoramento Ambiental , Humanos , Hidrocarbonetos Clorados/análise , Parafina/análise , Medição de Risco , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...