Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 996345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246587

RESUMO

Background: CD161 has been identified as a prognostic biomarker in many neoplasms, but its role in breast cancer (BC) has not been fully explained. We aimed to investigate the molecular mechanism and prognostic value of CD161 in BC. Methods: CD161 expression profile was extracted from TIMER, Oncomine, UALCAN databases, and verified by the Gene Expression Omnibus (GEO) database and quantitative real-time polymerase chain reaction (qRT-PCR). The prognostic value of CD161 was assessed via GEPIA, Kaplan-Meier plotter and PrognoScan databases. The Cox regression and nomogram analyses were conducted to further validate the association between CD161 expression and survival. Gene set enrichment analysis (GSEA), Gene Ontology (GO) analysis, and KEGG pathway enrichment analysis were performed to probe the tumor-associated annotations of CD161. CIBERSORT and ssGSEA were employed to investigate the correlation between CD161 expression and immune cell infiltration in BC, and the result was verified by TIMER and TISIDB. Results: Multiple BC cohorts showed that CD161 expression was decreased in BC, and a high CD161 expression was associated with a preferable prognosis. Therefore, we identified the combined model including CD161, age and PR status to predict the survival (C index = 0.78) of BC patients. Functional enrichment analysis indicated that CD161 and its co-expressed genes were closely related to several cancerous and immune signaling pathways, suggesting its involvement in immune response during cancer development. Moreover, immune infiltration analysis revealed that CD161 expression was correlated with immune infiltration. Conclusion: Collectively, our findings revealed that CD161 may serve as a potential biomarker for favorable prognosis and a promising immune therapeutic target in BC.

2.
Biol Proced Online ; 24(1): 15, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284262

RESUMO

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is known as a tumor suppressor and lowly expressed in most cancers. The expression pattern and role of ACE2 in breast cancer (BC) have not been deeply elucidated. METHODS: A systematic pan-cancer analysis was conducted to assess the expression pattern and immunological role of ACE2 based on RNA-sequencing (RNA-seq) data downloaded from The Cancer Genome Atlas (TCGA). The correlation of ACE2 expression and immunological characteristics in the BC tumor microenvironment (TME) was evaluated. The role of ACE2 in predicting the response to therapeutic options was estimated. Moreover, the pharmacodynamic effect of angiotensin-(1-7) (Ang-1-7), the product of ACE2, on chemotherapy and immunotherapy was evaluated on the BALB/c mouse BC model. In addition, the plasma samples from BC patients receiving neoadjuvant chemotherapy were collected and subjected to the correlation analysis of the expression level of Ang-1-7 and the response to neoadjuvant chemotherapy. RESULTS: ACE2 was lowly expressed in BC tissues compared with that in adjacent tissues. Interestingly, ACE2 was shown the highest correlation with immunomodulators, tumor-infiltrating immune cells (TIICs), cancer immunity cycles, immune checkpoints, and tumor mutation burden (TMB) in BC. In addition, a high level of ACE2 indicated a low response to endocrine therapy and a high response to chemotherapy, anti-ERBB therapy, antiangiogenic therapy and immunotherapy. In the mouse model, Ang-1-7 sensitized mouse BC to the chemotherapy and anti-PD-1 immunotherapy, which revealed its significant anti-tumor effect. Moreover, a high plasma level of Ang-1-7 was associated with a better response to neoadjuvant chemotherapy. CONCLUSIONS: ACE2 identifies immuno-hot tumors in BC, and its enzymatic product Ang-1-7 sensitizes BC to the chemotherapy and immunotherapy by remodeling the TME.

3.
Front Genet ; 13: 969409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118892

RESUMO

Purpose: To investigate the correlation between pre-ablation ultrasound radiomics features and the sonication energy for focused ultrasound surgery (FUS) of benign breast tumors. Method: 53 benign breast tumors of 28 patients treated by ultrasound-guided focused ultrasound surgery (USgFUS) were included in this study. The sonication energy per unit volume of each tumor was calculated. Three-quarter point was chosen as the cut-off to divide the 53 included tumors into high sonication energy (HSE, n = 14) and low sonication energy (LSE, n = 39) groups. For each tumor, the region of interest (ROI) of both the tumor itself (tROI) and the near field tissue (nfROI) were delineated and analyzed separately using ImageJ software. Pearson correlation coefficient and multiple linear regression analysis were used for radiomics feature selection. To explore the diagnostic performance of different ultrasound radiomics features, a receiver operating characteristic (ROC) curve analysis was performed. Results: In total of 68 radiomics features were extracted from pre-ablation ultrasound images of each tumor. Of all radiomics features, BX in tROI (p < 0.001), BX (p = 0.001) and Circ (p = 0.019) in nfROI were independently predictive features of sonication energy per unit volume. The ROC curves showed that the area under the curve (AUC) values of BX in tROI, BX, and Circ in nfROI were 0.797, 0.787 and 0.822, respectively. Conclusion: This study provided three radiomics features of pre-ablation ultrasound image as predictors of sonication dose for FUS in benign breast tumors. Further clinical trials are needed to confirm the predictive effect of these radiomics features.

4.
Oncol Lett ; 24(2): 259, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35765270

RESUMO

In patients with triple-negative breast cancer (TNBC), high tumour mutation burden and aberrant oncogene expression profiles are some of the causes of poor prognosis. Therefore, it is necessary to identify aberrantly expressed oncogenes, since they have the potential to serve as therapeutic targets. Transient receptor potential channel 5 opposite strand (TRPC5OS) has been previously shown to function as a novel tumour inducer. However, the underlying mechanism of TRPC5OS function in TNBC remain to be elucidated. Therefore, in the present study TRPC5OS expression was first measured in tissue samples of patients with TNBC and a panel of breast cancer cell lines (ZR-75-1, MDA-MB-453, SK-BR-3, JIMT-1, BT474 and HCC1937) by using qRT-PCR and Western blotting. Subsequently, the possible effects of TRPC5OS on MDA-MB-231 cells proliferation were determined using Cell Counting Kit-8 and 5-Ethynyl-2'-deoxyuridine assays after Lentiviral transfection of MDA-MB-231. In addition, potential interaction partners of TRPC5OS were explored using liquid chromatography-mass spectrometry (LC-MS)/MS. Gene expression patterns following TRPC5OS overexpression were also detected in MDA-MB-231 cells by using High-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis were then used to systematically verify the potential interactions among the TRPC5OS-regulated genes. The potential relationship between TRPC5OS-interacting proteins and gene expression patterns were studied using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis. TRPC5OS expression was found to be significantly higher in TNBC tumour tissues and breast cancer cell lines compared with luminal tumour tissues and ZR-75-1. In addition, the overexpression of TRPC5OS significantly increased cell proliferation. High-throughput sequencing results revealed that 5,256 genes exhibited differential expression following TRPC5OS overexpression, including 3,269 upregulated genes and 1,987 downregulated genes. GO analysis results indicated that the functions of these differentially expressed genes were enriched in the categories of 'cell division' and 'cell proliferation' regulation. KEGG analysis showed that the TRPC5OS-regulated genes were associated with processes of 'homologous recombination' and 'TNF signalling pathways'. Subsequently, 17 TRPC5OS-interacting proteins were found using LC-MS/MS and STRING analysis. The most important protein among interacting proteins was ENO1 which was associated with glycolysis and regulated proliferation of cancer. In summary, data from the present study suggest that TRPC5OS overexpression can increase TNBC cell proliferation and ENO1 may be a potential target protein mediated by TRPC5OS. Therefore, TRPC5OS may serve as a novel therapeutic target for TNBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...