Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Commun Signal ; 17(4): 1417-1433, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548811

RESUMO

An increasing number of studies have documented atypical protein kinase C isoform ι (PKCι) as an oncoprotein playing multifaceted roles in pancreatic carcinogenesis, including sustaining the transformed growth, prohibiting apoptosis, strengthening invasiveness, facilitating autophagy, as well as promoting the immunosuppressive tumor microenvironment of pancreatic tumors. In this study, we present novel evidence that PKCι overexpression increases STAT3 phosphorylation at the Y705 residue while decreasing STAT3 phosphorylation at the S727 residue in pancreatic cancer cells. We further demonstrate that STAT3 phosphorylation at Y705 and S727 residues is mutually antagonistic, and that STAT3 Y705 phosphorylation is positively related to the transcriptional activity of STAT3 in pancreatic cancer cells. Furthermore, we discover that PKCι inhibition attenuates STAT3 transcriptional activity via Y705 dephosphorylation, which appears to be resulted from enhanced phosphorylation of S727 in pancreatic cancer cells. Finally, we investigate and prove that by modulating the STAT3 activity, the PKCι inhibitor can synergistically enhance the antitumor effects of pharmacological STAT3 inhibitors or reverse the anti-apoptotic side effects incited by the MEK inhibitor, thereby posing as a prospective sensitizer in the treatment of pancreatic cancer cells.

2.
Cell Signal ; 86: 110115, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375670

RESUMO

To investigate the impact of oncogenic protein kinase C isoform ι (PKCι) on the microenvironment and the immunogenic properties of pancreatic tumors, we prohibit PKCι activity in various pancreatic ductal adenocarcinoma (PDAC) cell lines and co-culture them with human natural killer NK92 cells. The results demonstrate that PKCι suppression enhances the susceptibility of PDAC to NK cytotoxicity and promotes the degranulation and cytolytic activity of co-cultured NK92 cells. Mechanistic studies pinpoint that downstream of KRAS, both YAP1 and STAT3 are recruited by oncogenic PKCι to elevate the expression of PDL1, contributing to constitute an immune suppressive microenvironment in PDAC. Co-culture with NK92 further induces PDL1 upregulation via STAT3 to stimulate immune escape of PDAC cells. Subsequently, inhibition of PKCι in PDAC alleviates the immune suppression and enhances the cytotoxicity of NK92 towards PDAC through restraining PDL1 overexpression. Combined with PD1/PDL1 blocker, PKCι inhibitor remarkably elevates the cytotoxicity of NK92 against PDAC cells in vitro, establishing PKCι inhibitor as a promising candidate for boosting the immunotherapy of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinogênese/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...