Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15758, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977800

RESUMO

The role of SLC3A2, a gene implicated in disulfidptosis, has not been characterized in gliomas. This study aims to clarify the prognostic value of SLC3A2 and its influence on glioma. We evaluated the expression of SLC3A2 and its prognostic importance in gliomas using publicly accessible databases and our clinical glioma samples and with reliance on Meta and Cox regression analysis approaches. Functional enrichment analyses were performed to explore SLC3A2's function. Immune infiltration was evaluated using CIBERSORT, ssGSEA, and single-cell sequencing data. Additionally, Tumor immune dysfunction and exclusion (TIDE) and epithelial-mesenchymal transition scores were determined. CCK8, colony formation, migration, and invasion assays were utilized in vitro, and an orthotopic glioma xenograft model was employed in vivo, to investigate the role of SLC3A2 in gliomas. Bioinformatics analyses indicated high SLC3A2 expression correlates with adverse clinicopathological features and poor patient prognosis. Upregulated SLC3A2 influenced the tumor microenvironment by altering immune cell infiltration, particularly of macrophages, and tumor migration and invasion. SLC3A2 expression positively correlated with immune therapy indicators, including immune checkpoints and TIDE. Elevated SLC3A2 was revealed as an independent risk element for poor glioma prognosis through Cox regression analyses. In vitro experiments showed that reduced SLC3A2 expression decreased cell proliferation, migration, and invasion. In vivo, knockdown of SLC3A2 led to a reduction in tumor volume and prolonged survival in tumor-bearing mice. Therefore, SLC3A2 is a prognostic biomarker and associated with immune infiltration in gliomas.


Assuntos
Neoplasias Encefálicas , Regulação Neoplásica da Expressão Gênica , Glioma , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Humanos , Prognóstico , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Movimento Celular , Microambiente Tumoral/imunologia , Proliferação de Células , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Feminino , Masculino , Transição Epitelial-Mesenquimal/genética , Camundongos Nus
2.
Aging (Albany NY) ; 15(19): 10146-10167, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37837549

RESUMO

BACKGROUND: Gliomas are the most frequently diagnosed primary brain tumors, and are associated with multiple molecular aberrations during their development and progression. GPR37 is an orphan G protein-coupled receptor (GPCR) that is implicated in different physiological pathways in the brain, and has been linked to various malignancies. The aim of this study was to explore the relationship between GPR37 gene expression and the clinicopathological factors, patient prognosis, tumor-infiltrating immune cell signature GSEA and methylation levels in glioma. METHODS: We explored the diagnostic value, clinical relevance, and molecular function of GPR37 in glioma using TCGA, STRING, cBioPortal, Tumor Immunity Estimation Resource (TIMER) database and MethSurv databases. Besides, the "ssGSEA" algorithm was conducted to estimate immune cells infiltration abundance, with 'ggplot2' package visualizing the results. Immunohistochemical staining of clinical samples were used to verify the speculations of bioinformatics analysis. RESULTS: GPR37 expression was significantly higher in the glioma tissues compared to the normal brain tissues, and was linked to poor prognosis. Functional annotation of GPR37 showed enrichment of ether lipid metabolism, fat digestion and absorption, and histidine metabolism. In addition, GSEA showed that GPR37 was positively correlated to the positive regulation of macrophage derived foam cell differentiation, negative regulation of T cell receptor signaling pathway, neuroactive ligand receptor interaction, calcium signaling pathway, and negatively associated with immunoglobulin complex, immunoglobulin complex circulating, ribosome and spliceosome mediated by circulating immunoglobulin etc. TIMER2.0 and ssGSEA showed that GPR37 expression was significantly associated with the infiltration of T cells, CD8 T cell, eosinophils, macrophages, neutrophils, NK CD56dim cells, NK cells, plasmacytoid DCs (pDCs), T helper cells and T effector memory (Tem) cells. In addition, high GPR37 expression was positively correlated with increased infiltration of M2 macrophages, which in turn was associated with poor prognosis. Furthermore, GPR37 was positively correlated with various immune checkpoints (ICPs). Finally, hypomethylation of the GPR37 promoter was associated with its high expression levels and poor prognosis in glioma. CONCLUSION: GPR37 had diagnostic and prognostic value in glioma. The possible biological mechanisms of GPR37 provide novel insights into the clinical diagnosis and treatment of glioma.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/genética , Algoritmos , Biologia Computacional , Imunoglobulinas
3.
Front Plant Sci ; 14: 1211853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810392

RESUMO

Introduction: GRAS genes encode plant-specific transcription factors that play essential roles in plant growth and development. However, the members and the function of the GRAS gene family have not been reported in Liriodendron chinense. L. chinense, a tree species in the Magnolia family that produces excellent timber for daily life and industry. In addition, it is a good relict species for plant evolution research. Methods: Therefore, we conducted a genome-wide study of the LcGRAS gene family and identified 49 LcGRAS genes in L. chinense. Results: We found that LcGRAS could be divided into 13 sub-groups, among which there is a unique branch named HAM-t. We carried out RNA sequencing analysis of the somatic embryos from L. chinense and found that LcGRAS genes are mainly expressed after heart-stage embryo development, suggesting that LcGRAS may have a function during somatic embryogenesis. We also investigated whether GRAS genes are responsive to stress by carrying out RNA sequencing (RNA-seq) analysis, and we found that the genes in the PAT subfamily were activated upon stress treatment, suggesting that these genes may help plants survive stressful environments. We found that PIF was downregulated and COR was upregulated after the transient overexpression of PATs, suggesting that PAT may be upstream regulators of cold stress. Discussion: Collectively, LcGRAS genes are conserved and play essential roles in plant development and adaptation to abiotic stress.

4.
BMC Plant Biol ; 23(1): 415, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684590

RESUMO

As one of the largest plant specific transcription factor families, NAC family members play an important role in plant growth, development and stress resistance. To investigate the function of NAC transcription factors during abiotic stress, as well as during somatic embryogenesis, we identified and characterized the NAC gene family in Liriodendron chinense. We found that most LcNAC members contain more than three exons, with a relatively conserved gene and motif structure, especially at the N-terminus. Interspecies collinearity analysis revealed a closer relationship between the L. chinense NACs and the P. trichocarpa NACs. We analyzed the expression of LcNAC in different tissues and under three abiotic stresses. We found that 12 genes were highly expressed during the ES3 and ES4 stages of somatic embryos, suggesting that they are involved in the development of somatic embryos. 6 LcNAC genes are highly expressed in flower organs. The expression pattern analysis of LcNACs based on transcriptome data and RT-qPCR obtained from L. chinense leaves indicated differential expression responses to drought, cold, and heat stress. Genes in the NAM subfamily expressed differently during abiotic stress, and LcNAC6/18/41/65 might be the key genes in response to abiotic stress. LcNAC6/18/41/65 were cloned and transiently transformed into Liriodendron protoplasts, where LcNAC18/65 was localized in cytoplasm and nucleus, and LcNAC6/41 was localized only in nucleus. Overall, our findings suggest a role of the NAC gene family during environmental stresses in L. chinense. This research provides a basis for further study of NAC genes in Liriodendron chinense.


Assuntos
Liriodendron , Acetilcisteína , Núcleo Celular , Citoplasma
5.
BMC Cancer ; 23(1): 403, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142967

RESUMO

BACKGROUND: Leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1) is regarded as an inhibitory molecule. However, the importance of LILRB1 expression in glioma has not yet been determined. This investigation examined the immunological signature, clinicopathological importance and prognostic value of LILRB1 expression in glioma. METHODS: We used data from the UCSC XENA database, the Cancer Genome Atlas (TCGA) database, the Chinese Glioma Genome Atlas (CGGA) database, the STRING database, the MEXPRESS database and our clinical glioma samples to perform bioinformatic analysis and used vitro experiments to examine the predictive value and potential biological roles of LILRB1 in glioma. RESULTS: Higher LILRB1 expression was considerably present in the higher WHO grade glioma group and was linked to a poorer prognosis in patients with glioma. Gene set enrichment analysis (GSEA) revealed that LILRB1 was positively correlated with the JAK/STAT signaling pathway. LILRB1 combined with tumor mutational burden (TMB) and microsatellite instability (MSI) may be a promising indicator for the effectiveness of immunotherapy in patients with glioma. Increased LILRB1 expression was positively linked with the hypomethylation, M2 macrophage infiltration, immune checkpoints (ICPs) and M2 macrophage makers. Univariate and multivariate Cox regression analyses determined that increased LILRB1 expression was a standalone causal factor for glioma. Vitro experiments determined that LILRB1 positively enhanced the proliferation, migration and invasion in glioma cells. MRI images demonstrated that higher LILRB1 expression was related with larger tumor volume in patients with glioma. CONCLUSION: Dysregulation of LILRB1 in glioma is correlated with immune infiltration and is a standalone causal factor for glioma.


Assuntos
Glioma , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Humanos , Antígenos CD/genética , Biologia Computacional , Glioma/genética , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Pacientes , Prognóstico
6.
Genes (Basel) ; 14(3)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36981040

RESUMO

Terpenoids play a key role in plant growth and development, supporting resistance regulation and terpene synthase (TPS), which is the last link in the synthesis process of terpenoids. Liriodendron chinense, commonly called the Chinese tulip tree, is a rare and endangered tree species of the family Magnoliaceae. However, the genome-wide identification of the TPS gene family and its transcriptional responses to development and abiotic stress are still unclear. In the present study, we identified a total of 58 TPS genes throughout the L. chinense genome. A phylogenetic tree analysis showed that they were clustered into five subfamilies and unevenly distributed across six chromosomes. A cis-acting element analysis indicated that LcTPSs were assumed to be highly responsive to stress hormones, such as methyl jasmonate (MeJA) and abscisic acid (ABA). Consistent with this, transcriptome data showed that most LcTPS genes responded to abiotic stress, such as cold, drought, and hot stress, at the transcriptional level. Further analysis showed that LcTPS genes were expressed in a tissue-dependent manner, especially in buds, leaves, and bark. Quantitative reverse transcription PCR (qRT-PCR) analysis confirmed that LcTPS expression was significantly higher in mature leaves compared to young leaves. These results provide a reference for understanding the function and role of the TPS family, laying a foundation for further study of the regulation of TPS in terpenoid biosynthesis in L. chinense.


Assuntos
Liriodendron , Filogenia , Liriodendron/genética , Genes de Plantas , Terpenos/metabolismo
7.
Nat Commun ; 13(1): 4712, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953495

RESUMO

The prodrug approach has emerged as a promising solution to combat bacterial resistance and enhance treatment efficacy against bacterial infections. Here, we report an adenosine triphosphate (ATP)-activated prodrug system for on-demand treatment of bacterial infection. The prodrug system benefits from the synergistic action of zeolitic imidazolate framework-8 and polyacrylamide hydrogel microsphere, which simultaneously transports indole-3-acetic acid and horseradish peroxidase in a single carrier while preventing the premature activation of indole-3-acetic acid. The ATP-responsive characteristic of zeolitic imidazolate framework-8 allows the prodrug system to be activated by the ATP secreted by bacteria to generate reactive oxygen species (ROS), displaying exceptional broad-spectrum antimicrobial ability. Upon disruption of the bacterial membrane by ROS, the leaked intracellular ATP from dead bacteria can accelerate the activation of the prodrug system to further enhance antibacterial efficiency. In vivo experiments in a mouse model demonstrates the applicability of the prodrug system for wound disinfection with minimal side effects.


Assuntos
Infecções Bacterianas , Pró-Fármacos , Trifosfato de Adenosina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/microbiologia , Desinfecção , Camundongos , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio
8.
Mitochondrial DNA B Resour ; 6(10): 3046-3048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621982

RESUMO

Casuarina equisetifolia, as windbreaks, soil erosion, and sand dune stabilization with high resistant to typhoon force winds, drought and salinization, belongs to the Casuarinaceae family. In this study, the complete chloroplast genome of C. equisetifolia was sequenced by Illumina sequencing platform and annotated by Geneious Prime. The complete chloroplast genome size is 156,128 bp in length, with a large single copy region (LSC: 86,192 bp) and a small single-copy region (SSC: 18,462 bp), which was separated by a pair of 25,737 bp inverted repeated regions (IRs). The chloroplast genome of C. equisetifolia encodes total 127 genes, including 82 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The phylogenomic relationship analysis suggested that the Casuarinaceae family, which includes C. equisetifolia, was more closely related to the family of Betulaceae.

9.
Mitochondrial DNA B Resour ; 6(3): 851-852, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33796654

RESUMO

Clerodendrum japonicum (Thunb.) sweet, a member of Verbenaceae, is a traditional Chinese medicinal plant mainly distributed in tropical and subtropical Asia. Herein, we reported the complete chloroplast genome sequence of C. japonicum. The size of the chloroplast genome is 152,171 bp in length, including a large single-copy region (LSC) of 83,415 bp, a small single-copy region (SSC) of 17,318 bp, which was separated by a pair of inverted repeated regions of 25,719 bp. The C. japonicum chloroplast genome encodes 133 genes, including 88 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The phylogenetic tree showed that C. japonicum is closely related to C. mandarinorum and C. yunnanense.

10.
Mitochondrial DNA B Resour ; 6(2): 555-556, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33628926

RESUMO

Sloanea sinensis (Hance) Hu is a tree species and member of the Elaeocarpaceae family. It's an excellent commercial tree species which has a relatively high net growth as forests. Here, we report the complete chloroplast genome sequence of a Sloanea genus for the first time. The complete chloroplast sequence of S. sinensis is 158,001 bp in length, including a large single copy region (LSC: 88,481 bp) and a small single copy region (SSC: 17,481 bp), the latter of which is separated by a pair of inverted repeat regions (IRs: 26,051 bp). Phylogenetic analysis indicates that the Elaeocarpaceae is a family within the Oxalidales may be more appropriate than belongs to Malvales as traditional plant taxonomy.

11.
ACS Appl Mater Interfaces ; 12(27): 30882-30889, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32525648

RESUMO

In this work, we proposed a new strategy of fabricating time-resolved fluorescent nanoprobes by using an enzyme-integrated lanthanide coordination polymer (CP) composite for the detection of superoxide anions (O2•-). This CP composite was constructed with terbium ions (Tb3+) as a metal node, adenosine triphosphate (ATP) as a bridge ligand, and carboxyphenylboronic acid (CPBA) as a sensitizer in which superoxide dismutase (SOD) was encapsulated by a self-adaptive inclusion process. The as-prepared SOD@ATP/Tb-CPBA displays both catalytic and fluorescence properties. Benefiting from the shielding effect of ATP/Tb CP, greatly enhanced catalytic activity and stability against harsh environments can be obtained in the loaded SOD. Meanwhile, the loaded SOD can remove the water molecules on the coordination sphere of Tb3+, leading to a significant increase in the fluorescence intensity and lifetime of SOD@ATP/Tb-CPBA. However, upon the addition of O2•-, the fluorescence of SOD@ATP/Tb-CPBA was quenched significantly. This is because SOD can convert O2•- into H2O2 to induce the deboronation of CPBA, resulting in an intramolecular charge transfer process. On this basis, by taking advantage of Tb3+ in long lifetime emission, a time-resolved fluorescence method was developed for the detection of O2•-, and satisfactory results have been achieved in both buffered aqueous solutions and serum samples. We believe that the presented study will open up a new avenue to develop enzyme-involved fluorescent nanoprobes.

12.
Anal Chem ; 92(4): 3447-3454, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31948223

RESUMO

Metal-organic framework (MOF) has been extensively explored in a number of fields due to its diverse properties. In this work, we demonstrated the potential of MOF in the establishment of a self-assembled fluorescence resonance energy transfer (FRET) system for developing ratiometric fluorescent nanoprobe. For this purpose, zeolitic imidazolate framework-8 (ZIF-8) was selected as a MOF model to entrap carbon dot (CD) and curcumin (CCM) during its self-assembly, which produces CD/CCM@ZIF-8. Benefiting from the confinement effect of ZIF-8, the loaded CD and CCM can be brought in close proximity for energy transfer to occur. Under optimal conditions, a high FRET efficiency of 68.7% can be obtained. Importantly, compared with traditional FRET systems, the fabrication process of CD/CCM@ZIF-8 is much more simple and straightforward, which does not involve the elaborate design and complicated synthesis of molecular linkers. However, in the presence of hypochlorous acid (HClO), the FRET process from CD to CCM will be disrupted, rendering CD/CCM@ZIF-8 to display a ratiometric response to HClO. This finding led to a method for ratiometric fluorescent detection of HClO with a detection limit of 67 nM and excellent selectivity over other reactive oxygen species. We believe that this study can give a new insight into the rational design and application of FRET-based nanoprobes.

13.
Plants (Basel) ; 8(11)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752096

RESUMO

Phytosulfokine-α (PSK-α) is a newly discovered short peptide that acts as a phytohormone in various plants. Previous studies have shown that PSK-α is critical for many biological processes in plants, such as cell division and differentiation, somatic embryogenesis, pollen germination and plant resistance. In this study, we cloned two PSK homolog genes from Cunninghamia lanceolata (Lamb.) Hook (Chinese fir), ClPSK1 and ClPSK2, and characterized their function in root development. Quantitative RT-PCR analyses showed that both ClPSK1 and ClPSK2 were expressed in vegetative organs, mainly in roots. Transgenic Arabidopsis plants overexpressing ClPSK1 or ClPSK2 showed a higher frequency of adventitious root formation and increased root length. The expression of genes in Arabidopsis that are involved in stem cell activity (PLT1, PLT2 and WOX5), radial organization of the root (SHR and SCR) and cell cycle (CYCB1;1, CYCD4;1, CDKB1;1 and RBR) were significantly up-regulated, which may contribute to the elongation of the primary root and the formation of adventitious root in transgenic lines. Our results suggest that ClPSKs play an important role during root growth and development.

14.
Chem Commun (Camb) ; 55(76): 11450-11453, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31490469

RESUMO

A pyrophosphate ion (PPi)-responsive alginate hydrogel was fabricated by using Cu2+ as a crosslinker. Benefiting from the ultrahigh affinity of Cu2+ to PPi, which can discriminate PPi from phosphate ions and other anions, the incorporation of carbon dots enables the alginate hydrogel to be an effective fluorescent sensing platform for the detection of alkaline phosphatase.

15.
Mitochondrial DNA B Resour ; 3(1): 222-224, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33474124

RESUMO

The complete chloroplast genome of Cerasus campanulata was obtained by using 454 pyrosequencing technology. Cerasus campanulata chloroplast genome is 157,906 base pairs containing 115 unique genes, including 79 protein-coding genes, 39 tRNAs and eight rRNAs. Phylogenetic analysis of the protein-coding genes indicates that C. campanulata is clearly a member of the Rosaceae order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...