Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 12(1): 162-176, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291124

RESUMO

Human carboxylesterase 2 (hCES2A) is a key target to ameliorate the intestinal toxicity triggered by irinotecan that causes severe diarrhea in 50%-80% of patients receiving this anticancer agent. Herbal medicines are frequently used for the prevention and treatment of the intestinal toxicity of irinotecan, but it is very hard to find strong hCES2A inhibitors from herbal medicines in an efficient way. Herein, an integrated strategy via combination of chemical profiling, docking-based virtual screening and fluorescence-based high-throughput inhibitor screening assays was utilized. Following the screening of a total of 73 herbal products, licorice (the dried root of Glycyrrhiza species) was found with the most potent hCES2A inhibition activity. Further investigation revealed that the chalcones and several flavonols in licorice displayed strong hCES2A inhibition activities, while isoliquiritigenin, echinatin, naringenin, gancaonin I and glycycoumarin exhibited moderate inhibition of hCES2A. Inhibition kinetic analysis demonstrated that licochalcone A, licochalcone C, licochalcone D and isolicoflavonol potently inhibited hCES2A-mediated fluorescein diacetate hydrolysis in a reversible and mixed inhibition manner, with Ki values less than 1.0 µM. Further investigations demonstrated that licochalcone C, the most potent hCES2A inhibitor identified from licorice, dose-dependently inhibited intracellular hCES2A in living HepG2 cells. In summary, this study proposed an integrated strategy to find hCES2A inhibitors from herbal medicines, and our findings suggested that the chalcones and isolicoflavonol in licorice were the key ingredients responsible for hCES2A inhibition, which would be very helpful to develop new herbal remedies or drugs for ameliorating hCES2A-associated drug toxicity.


Assuntos
Carboxilesterase/antagonistas & inibidores , Carboxilesterase/metabolismo , Chalconas/farmacologia , Flavonóis/farmacologia , Glycyrrhiza/química , Extratos Vegetais/química , Cromatografia Líquida , Fluorescência , Humanos , Técnicas In Vitro , Espectrometria de Massas em Tandem
2.
Int J Biol Macromol ; 145: 620-633, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31883893

RESUMO

Herbal medicines are frequently used for the prevention and treatment of obesity and obesity-related disorders. Our preliminary screening showed that St. John's Wort (SJW) displayed potent inhibition on pancreatic lipase (PL), a key hydrolase responsible for lipid digestion and absorption in mammals. Herein, the inhibition potentials and inhibitory mechanism of SJW extract and its major constituents on PL were fully investigated by a set of in vitro and in silico studies. The results clearly demonstrated that the naphthodianthrones, biflavones and most of flavonoids in SJW displayed strong to moderate inhibition on PL. Among all tested natural compounds, two naphthodianthrones (hypericin and pseudohypericin) and one biflavone (I3,II8-biapigenin) isolated from SJW exhibited potent PL inhibition activity, with the IC50 values of <1 µM. Inhibition kinetics analyses showed that hypericin, pseudohypericin and I3,II8-biapigenin inhibited PL via a mixed manner, while molecular dynamics simulations revealed that three newly identified PL inhibitors could bind on PL at both the catalytic cavity and the interface between colipase and the C-terminal domain of PL. Collectively, our findings suggested that part of major constituents in SJW displayed potent PL inhibition activities, which could be used as lead compounds for the development of novel PL inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Hypericum/química , Lipase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Sítios de Ligação , Domínio Catalítico , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Hidrólise , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Pâncreas/enzimologia , Extratos Vegetais/química , Relação Estrutura-Atividade
3.
Int J Biol Macromol ; 137: 261-269, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260759

RESUMO

Human carboxylesterase 2 (CES2A), one of the most abundant hydrolases distributed in human small intestine and colon, play key roles in the hydrolysis of a wide range of prodrugs and other esters. Recent studies have demonstrated that CES2A inhibitors may ameliorate irinotecan-induced severe diarrhea, but the specific and efficacious inhibitors targeting intracellular CES2A are rarely reported. Herein, a large-scale screening campaign was conducted for discovery of potent and specific CES2A inhibitor(s). Following screening of more than one hundred of natural products, glabridin (a bioactive compound of Glycyrrhiza glabra L.) was found displaying potent inhibition on CES2A and high specificity over CES1A (>500-fold) and other serine hydrolases. Further investigation showed that glabridin was cell permeable and low cytotoxic, as well as capable of inhibiting intracellular CES2A in living cells, with the IC50 value of 0.52 µM. Molecular dynamics simulations showed that glabridin formed strong and stable interactions with both the catalytic cavity and Z site of CES2A via hydrophobic interactions. In summary, glabridin was a potent and specific inhibitor targeting intracellular CES2A, which could be used as an ideal lead compound to develop more efficacious CES2A inhibitors for modulating the pharmacokinetic behaviors of CES2A-substrate drugs and alleviating irinotecan-induced diarrhea.


Assuntos
Carboxilesterase/antagonistas & inibidores , Carboxilesterase/química , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Técnicas de Cultura de Células , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Hidrólise , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Chem Biol Interact ; 308: 339-349, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170387

RESUMO

Magnolol, the most abundant bioactive constituent of the Chinese herb Magnolia officinalis, has been found with multiple biological activities, including anti-oxidative, anti-inflammatory and enzyme-regulatory activities. In this study, the inhibitory effects and inhibition mechanism of magnolol on human carboxylesterases (hCEs), the key enzymes responsible for the hydrolytic metabolism of a variety of endogenous esters as well as ester-bearing drugs, have been well-investigated. The results demonstrate that magnolol strongly inhibits hCE1-mediated hydrolysis of various substrates, whereas the inhibition of hCE2 by magnolol is substrate-dependent, ranging from strong to moderate. Inhibition of intracellular hCE1 and hCE2 by magnolol was also investigated in living HepG2 cells, and the results showed that magnolol could strongly inhibit intracellular hCE1, while the inhibition of intracellular hCE2 was weak. Inhibition kinetic analyses and docking simulations revealed that magnolol inhibited both hCE1 and hCE2 in a mixed manner, which could be partially attributed to its binding at two distinct ligand-binding sites in each carboxylesterase, including the catalytic cavity and the regulatory domain. In addition, the potential risk of the metabolic interactions of magnolol via hCE1 inhibition was predicted on the basis of a series of available pharmacokinetic data and the inhibition constants. All these findings are very helpful in deciphering the metabolic interactions between magnolol and hCEs, and also very useful for avoiding deleterious interactions via inhibition of hCEs.


Assuntos
Compostos de Bifenilo/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Lignanas/metabolismo , Sítios de Ligação , Biocatálise , Compostos de Bifenilo/química , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Domínio Catalítico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Células Hep G2 , Humanos , Hidrólise , Cinética , Lignanas/química , Simulação de Acoplamento Molecular
5.
Int J Biol Macromol ; 120(Pt B): 1944-1954, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30268757

RESUMO

Human carboxylesterase 1 (hCE1) is a key enzyme responsible for the hydrolysis of a wide range of endogenous and xenobiotic esters, but the highly selective inhibitors against hCE1 are rarely reported. This study aimed to assess the inhibitory effects of natural flavonoids against hCE1 and to find potential specific hCE1 inhibitors. To this end, fifty-eight natural flavonoids were collected and their inhibitory effects against both hCE1 and hCE2 were assayed. Among all tested compounds, nevadensin, an abundant natural constitute from Lysionotus pauciflorus Maxim., displayed the best combination of inhibition potency and selectivity towards hCE1. The inhibition mechanism of nevadensin on hCE1 was further investigated using two site-specific hCE1 substrates including D-luciferin methyl ester (DME) and 2­(2­benzoyloxy­3­methoxyphenyl)benzothiazole (BMBT). Furthermore, docking simulations demonstrated that the binding area of nevadensin on hCE1 was highly overlapped with that of DME but was far away from that of BMBT, which was highly consistent with the inhibition modes of nevadensin. These findings found a natural occurring specific inhibitor of hCE1, which could be served as a lead compound for the development of novel hCE1 inhibitor with improved properties, and also hold great promise for investigating hCE1-ligand interactions.


Assuntos
Produtos Biológicos/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Flavonas/farmacologia , Produtos Biológicos/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Flavonas/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Conformação Proteica , Especificidade por Substrato
6.
Int J Biol Macromol ; 118(Pt B): 2216-2223, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30009906

RESUMO

Reduction of lipid absorption has been recognized as an attractive approach for the discovery of new drugs to treat obesity and overweight. The leave extract of Ginkgo biloba has been widely used for the treatment of metabolic diseases (such as hyperlipidemia) in both eastern and western countries, but the bioactive compounds in Ginkgo biloba and the underlying mechanism have not been fully characterized. This study aimed to investigate the inhibition potentials and mechanism of major biflavones from G. biloba on pancreatic lipase (PL), a key target regulating lipid absorption. The results clearly demonstrated that all tested biflavones in G. biloba including isoginkgetin, bilobetin, ginkgetin and sciadopitysin, displayed strong to moderate inhibitory effects on PL with the IC50 values ranging from 2.90 µM to 12.78 µM. Further investigations on both inhibition kinetic analyses and docking simulations demonstrated that isoginkgetin, bilobetin and ginkgetin were potent PL inhibitors (Ki < 2.5 µM), which could create strong interactions with the catalytic triad of PL via hydrogen bonding. These findings provided a new powerful evidence for explaining the hypolipidemic effects of G. biloba, while these newly identified PL inhibitors from G. biloba could serve as lead compounds for the development of biflavonoid-type PL inhibitors.


Assuntos
Biflavonoides/farmacologia , Inibidores Enzimáticos/farmacologia , Ginkgo biloba/química , Lipase/antagonistas & inibidores , Pâncreas/enzimologia , Animais , Biflavonoides/química , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Cinética , Lipase/metabolismo , Simulação de Acoplamento Molecular , Sus scrofa , Termodinâmica
7.
Bioorg Chem ; 80: 577-584, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30032067

RESUMO

Pancreatic lipase (PL), a key enzyme responsible for the hydrolysis of triacylglycerides in the gastrointestinal tract, has been identified as the therapeutic target for the regulation of lipid absorption. In the present study, six major constituents from a famous Chinese herbal medicine Cortex Mori Radicis (also named sangbaipi in Chinese), have been collected and their inhibitory effects on PL have been carefully investigated and well characterized by a fluorescence-based assay. The results clearly demonstrated that all tested bioactive constituents from Cortex Mori Radicis including sanggenone C (SC), sanggenone D (SD), kuwanon C (KC), kuwanon G (KG), morin and morusin displayed strong to moderate inhibitory effects towards PL with the IC50 values ranging from 0.77 µM to 20.56 µM. Further investigations on inhibition kinetics demonstrated that SC, SD, KC and KG functioned as potent and mixed inhibitors against PL-mediated 4-MU oleate hydrolysis, with the Ki values less than 5.0 µM. Furthermore, molecular docking simulations demonstrated that SD (the most potent PL inhibitor from Cortex Mori Radicis) could create strong interaction with Ser152 (the key amino acid in the catalytic triad) of PL via hydrogen bonding. All these findings provided a new powerful evidence for explaining the hypolipidemic effect of Cortex Mori Radicis, also suggested that some abundant natural compounds in this herbal medicine could be served as lead compounds for the development of new PL inhibitors.


Assuntos
Derivados de Benzeno/farmacologia , Benzofuranos/farmacologia , Cromonas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Lipase/antagonistas & inibidores , Animais , Derivados de Benzeno/química , Benzofuranos/química , Cromonas/química , Medicamentos de Ervas Chinesas/química , Inibidores Enzimáticos/química , Flavonoides/química , Lipase/metabolismo , Simulação de Acoplamento Molecular , Morus/química , Pâncreas/enzimologia , Suínos
8.
Bioorg Chem ; 77: 320-329, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421708

RESUMO

Human carboxylesterases (hCEs) are key enzymes from the serine hydrolase superfamily. Among all identified hCEs, human carboxylesterase 2 (hCE2) plays crucial roles in the metabolic activation of ester drugs including irinotecan and flutamide. Selective and potent hCE2 inhibitors could be used to alleviate the toxicity induced by hCE2-substrate drugs. In this study, more than fifty flavonoids were collected to assay their inhibitory effects against hCE2 using a fluorescence-based method. The results demonstrated that C3 and C6 hydroxy groups were essential for hCE2 inhibition, while O-glycosylation or C-glycosylation would lead to the loss of hCE2 inhibition. Among all tested flavonoids, 5,6-dihydroxyflavone displayed the most potent inhibitory effect against hCE2 with the IC50 value of 3.50 µM. The inhibition mechanism of 5,6-dihydroxyflavone was further investigated by both experimental and docking simulations. All these findings are very helpful for the medicinal chemists to design and develop more potent and highly selective flavonoid-type hCE2 inhibitors.


Assuntos
Carboxilesterase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Carboxilesterase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Flavonoides/síntese química , Flavonoides/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
9.
Front Pharmacol ; 8: 435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713276

RESUMO

Human carboxylesterase 1 (hCE1), one of the most important serine hydrolases distributed in liver and adipocytes, plays key roles in endobiotic homeostasis and xenobiotic metabolism. This study aimed to find potent and selective inhibitors against hCE1 from phytochemicals and their derivatives. To this end, a series of natural triterpenoids were collected and their inhibitory effects against human carboxylesterases (hCEs) were assayed using D-Luciferin methyl ester (DME) and 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB) as specific optical substrate for hCE1, and hCE2, respectively. Following screening of a series of natural triterpenoids, oleanolic acid (OA), and ursolic acid (UA) were found with strong inhibitory effects on hCE1 and relative high selectivity over hCE2. In order to get the highly selective and potent inhibitors of hCE1, a series of OA and UA derivatives were synthesized from OA and UA by chemical modifications including oxidation, reduction, esterification, and amidation. The inhibitory effects of these derivatives on hCEs were assayed and the structure-activity relationships of tested triterpenoids as hCE1 inhibitors were carefully investigated. The results demonstrated that the carbonyl group at the C-28 site is essential for hCE1 inhibition, the modifications of OA or UA at this site including esters, amides and alcohols are unbeneficial for hCE1 inhibition. In contrast, the structural modifications on OA and UA at other sites, such as converting the C-3 hydroxy group to 3-O-ß-carboxypropionyl (compounds 20 and 22), led to a dramatically increase of the inhibitory effects against hCE1 and very high selectivity over hCE2. 3D-QSAR analysis of all tested triterpenoids including OA and UA derivatives provide new insights into the fine relationships linking between the inhibitory effects on hCE1 and the steric-electrostatic properties of triterpenoids. Furthermore, both inhibition kinetic analyses and docking simulations demonstrated that compound 22 was a potent competitive inhibitor against hCE1-mediated DME hydrolysis. All these findings are very helpful for medicinal chemists to design and develop highly selective and more potent hCE1 inhibitors for biomedical applications.

10.
Food Chem Toxicol ; 109(Pt 2): 975-983, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28347758

RESUMO

Bacterial ß-glucuronidases play key roles in the deconjugation of a variety of endogenous and drug glucuronides, thus have been recognized as important targets to modulate the enterohepatic circulation of various glucuronides. In this study, more than 30 natural flavonoids were collected and their inhibitory effects against E. coli ß-glucuronidase (EcGUS) were assayed. The results demonstrated that some flavonoids including scutellarein, luteolin, baicalein, quercetin and scutellarin displayed strong to moderate inhibitory effects against EcGUS, with the IC50 values ranging from 5.76 µM to 29.64 µM, while isoflavones and dihydroflavones displayed weak inhibitory effects against EcGUS. Further investigation on inhibition kinetics revealed that scutellarein and luteolin functioned as potent competitive inhibitors against EcGUS-mediated PNPG hydrolysis, with the Ki values less than 3.0 µM. Molecular docking simulations demonstrated that scutellarein and luteolin could be well-docked into the catalytic site of EcGUS, while the binding areas of these two natural inhibitors on EcGUS were highly overlapped with that of PNPG on EcGUS. Additionally, the structure-inhibition relationships of natural flavonoids against EcGUS are also summarized, which will be very helpful for the medicinal chemists to design and develop more potent flavonoid-type inhibitors against EcGUS.


Assuntos
Inibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/enzimologia , Flavonoides/química , Glucuronidase/antagonistas & inibidores , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glucuronidase/química , Glucuronidase/metabolismo , Cinética , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
11.
Yao Xue Xue Bao ; 52(1): 58-65, 2017 01.
Artigo em Chinês | MEDLINE | ID: mdl-29911769

RESUMO

Carboxylesterase 1 (CE1) is an important serine hydrolase in mammals, which involved in the hydrolysis of a variety of compounds (endogenous substrates like cholesterol and xenobiotic compounds like ester-contain drugs and pesticides). This study aimed to design and develop the fluorescent probe substrates for human carboxylesterase 1 (hCE1), on the basis of the structural features of hCE1 preferred substrates. Four carboxylic esters deriving from BODIPY-8-carboxylic acid were designed and synthesized. After then, reaction phenotyping assays and chemical inhibition assays were used to evaluate the selectivity of these four ester derivatives towards hCE1. Our results clearly demonstrated that the substrate specificity of these ester substrates towards hCE1 would be improved with the decrease of the alcohol group on BODIPY-8-carboxylesters, while BODIPY-8-carboxylesters with small alcohol groups including methyl (BCM) and ethyl (BCE) esters could serve as the ideal probe substrates for hCE1. Given that BCM exhibit rapid hydrolytic rate in hCE1, we further investigate the enzymatic kinetics of this fluorescent probe substrate in both human liver microsomes (HLM) and recombinant hCE1, as well as to explore its potential application in high-throughput screening of hCE1 inhibitors by using HLM as enzyme source. The results showed that the kinetic behaviors and the affinity of BCM in HLM is much closed to those in recombinant hCE1, implying that hCE1 played the key roles in BCM hydrolysis in HLM. Furthermore, the inhibition study demonstrated that BCM could be used for rapid screening and characterization of hCE1 inhibitors, by using HLM to replace recombinant hCE1 as enzyme source.


Assuntos
Compostos de Boro/química , Hidrolases de Éster Carboxílico/química , Corantes Fluorescentes , Ésteres , Humanos , Hidrólise , Cinética , Microssomos Hepáticos/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...