Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
Exp Eye Res ; 233: 109550, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356536

RESUMO

The aim of this study was to assess the transmission of the ultraviolet (UV) radiation (200-400 nm) through intact enucleated globes of different species (dogs, cats, pigs, rabbits, horses, and humans) using spectrophotometry. Globes of cats (n = 6), dogs (n = 18), pigs (n = 10), rabbits (n = 6), horses (n = 10), and humans (n = 4) were analyzed. A 5-10 mm circular area of sclera and choroid from the posterior aspect of the globe was removed under a surgical microscope, leaving the retina intact in all species except the horse. Glass coverslips were added in horses and rabbits due to retinal and globe fragility. The %T of wavelengths from 200 to 800 nm were measured through the ocular media (cornea, aqueous humor, lens, and vitreous humor) and retina, and compared between species. The globes of cats and dogs allowed the most amount of UV radiation transmission, while those of pigs and humans allowed the least amount of UV radiation transmission. A small amount of UV radiation transmission through the ocular media was detected in the rabbit and horse. Results from this study will support further vision research that may be used to train companion, working, and service animals.


Assuntos
Cristalino , Raios Ultravioleta , Coelhos , Cavalos , Gatos , Humanos , Suínos , Animais , Cães , Retina , Corpo Vítreo , Córnea
3.
J Mol Biol ; 435(10): 168086, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37024008

RESUMO

DNA trinucleotide repeat (TRs) expansion beyond a threshold often results in human neurodegenerative diseases. The mechanisms causing expansions remain unknown, although the tendency of TR ssDNA to self-associate into hairpins that slip along their length is widely presumed related. Here we apply single molecule FRET (smFRET) experiments and molecular dynamics simulations to determine conformational stabilities and slipping dynamics for CAG, CTG, GAC and GTC hairpins. Tetraloops are favored in CAG (89%), CTG (89%) and GTC (69%) while GAC favors triloops. We also determined that TTG interrupts near the loop in the CTG hairpin stabilize the hairpin against slipping. The different loop stabilities have implications for intermediate structures that may form when TR-containing duplex DNA opens. Opposing hairpins in the (CAG) âˆ™ (CTG) duplex would have matched stability whereas opposing hairpins in a (GAC) âˆ™ (GTC) duplex would have unmatched stability, introducing frustration in the (GAC) âˆ™ (GTC) opposing hairpins that could encourage their resolution to duplex DNA more rapidly than in (CAG) âˆ™ (CTG) structures. Given that the CAG and CTG TR can undergo large, disease-related expansion whereas the GAC and GTC sequences do not, these stability differences can inform and constrain models of expansion mechanisms of TR regions.


Assuntos
DNA , Doenças Neurodegenerativas , Repetições de Trinucleotídeos , Humanos , DNA/genética , DNA/química , DNA Complementar , Conformação de Ácido Nucleico , Expansão das Repetições de Trinucleotídeos/genética , Doenças Neurodegenerativas/genética
4.
Biomolecules ; 13(1)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36671509

RESUMO

Intense study of intrinsically disordered proteins (IDPs) did not begin in earnest until the late 1990s when a few groups, working independently, convinced the community that these 'weird' proteins could have important functions. Over the past two decades, it has become clear that IDPs play critical roles in a multitude of biological phenomena with prominent examples including coordination in signaling hubs, enabling gene regulation, and regulating ion channels, just to name a few. One contributing factor that delayed appreciation of IDP functional significance is the experimental difficulty in characterizing their dynamic conformations. The combined application of multiple methods, termed integrative structural biology, has emerged as an essential approach to understanding IDP phenomena. Here, we review some of the recent applications of the integrative structural biology philosophy to study IDPs.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Transdução de Sinais , Biologia , Conformação Proteica
5.
Nanotechnology ; 34(18)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36652697

RESUMO

The transmission of light through sub-wavelength apertures (zero-mode waveguides, ZMW) in metal films is well-explored. It introduces both an amplitude modulation as well as a phase shift to the oscillating electromagnetic field. We propose a nanophotonic interferometer by bringing two ZMW (∼100 nm diameter) in proximity and monitoring the distribution of transmitted light in the back-focal plane of collecting microscope objective (1.3 N.A.). We demonstrate that both an asymmetry induced by the binding of a quantum dot in one of the two ZMW, as well as an asymmetry in ZMW diameter yield qualitatively similar transmission patterns. We find that the complex pattern can be quantified through a scalar measure of asymmetry along the symmetry axis of the aperture pair. In a combined experimental and computational exploration of detectors with differing ZMW diameters, we find that the scalar asymmetry is a monotonous function of the diameter difference of the two apertures, and that the scalar asymmetry measure is higher if the sample is slightly displaced from the focal plane of the collecting microscope objective. An optimization of the detector geometry determined that the maximum response is achieved at an aperture separation that is comparable to the wavelength on the exit side of the sensor. For small separations of apertures, on the order of a quarter of the wavelength and less, the signal is strongly polarization dependent, while for larger separations, on the order of the wavelength or larger, the signal becomes essentially polarization-independent.

6.
Nat Commun ; 13(1): 5402, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104339

RESUMO

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models.


Assuntos
Benchmarking , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Modelos Teóricos
7.
Chem Sci ; 13(33): 9668-9677, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091909

RESUMO

Internal motions of folded proteins have been assumed to be ergodic, i.e., that the dynamics of a single protein molecule averaged over a very long time resembles that of an ensemble. Here, by performing single-molecule fluorescence resonance energy transfer (smFRET) experiments and molecular dynamics (MD) simulations of a multi-domain globular protein, cytoplasmic protein-tyrosine phosphatase (SHP2), we demonstrate that the functional inter-domain motion is observationally non-ergodic over the time spans 10-12 to 10-7 s and 10-1 to 102 s. The difference between observational non-ergodicity and simple non-convergence is discussed. In comparison, a single-strand DNA of similar size behaves ergodically with an energy landscape resembling a one-dimensional linear chain. The observed non-ergodicity results from the hierarchical connectivity of the high-dimensional energy landscape of the protein molecule. As the characteristic time for the protein to conduct its dephosphorylation function is ∼10 s, our findings suggest that, due to the non-ergodicity, individual, seemingly identical protein molecules can be dynamically and functionally different.

8.
Biophys Rev (Melville) ; 3(1): 011306, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505224

RESUMO

Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.

9.
Cell Rep Phys Sci ; 2(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34888535

RESUMO

SNAP-25 (synaptosomal-associated protein of 25 kDa) is a prototypical intrinsically disordered protein (IDP) that is unstructured by itself but forms coiled-coil helices in the SNARE complex. With high conformational heterogeneity, detailed structural dynamics of unbound SNAP-25 remain elusive. Here, we report an integrative method to probe the structural dynamics of SNAP-25 by combining replica-exchange discrete molecular dynamics (rxDMD) simulations and label-based experiments at ensemble and single-molecule levels. The rxDMD simulations systematically characterize the coil-to-molten globular transition and reconstruct structural ensemble consistent with prior ensemble experiments. Label-based experiments using Förster resonance energy transfer and double electron-electron resonance further probe the conformational dynamics of SNAP-25. Agreements between simulations and experiments under both ensemble and single-molecule conditions allow us to assign specific helix-coil transitions in SNAP-25 that occur in submillisecond timescales and potentially play a vital role in forming the SNARE complex. We expect that this integrative approach may help further our understanding of IDPs.

10.
J Biol Chem ; 297(3): 101080, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403696

RESUMO

TIN2 is a core component of the shelterin complex linking double-stranded telomeric DNA-binding proteins (TRF1 and TRF2) and single-strand overhang-binding proteins (TPP1-POT1). In vivo, the large majority of TRF1 and TRF2 exist in complexes containing TIN2 but lacking TPP1/POT1; however, the role of TRF1-TIN2 interactions in mediating interactions with telomeric DNA is unclear. Here, we investigated DNA molecular structures promoted by TRF1-TIN2 interaction using atomic force microscopy (AFM), total internal reflection fluorescence microscopy (TIRFM), and the DNA tightrope assay. We demonstrate that the short (TIN2S) and long (TIN2L) isoforms of TIN2 facilitate TRF1-mediated DNA compaction (cis-interactions) and DNA-DNA bridging (trans-interactions) in a telomeric sequence- and length-dependent manner. On the short telomeric DNA substrate (six TTAGGG repeats), the majority of TRF1-mediated telomeric DNA-DNA bridging events are transient with a lifetime of ~1.95 s. On longer DNA substrates (270 TTAGGG repeats), TIN2 forms multiprotein complexes with TRF1 and stabilizes TRF1-mediated DNA-DNA bridging events that last on the order of minutes. Preincubation of TRF1 with its regulator protein Tankyrase 1 and the cofactor NAD+ significantly reduced TRF1-TIN2 mediated DNA-DNA bridging, whereas TIN2 protected the disassembly of TRF1-TIN2 mediated DNA-DNA bridging upon Tankyrase 1 addition. Furthermore, we showed that TPP1 inhibits TRF1-TIN2L-mediated DNA-DNA bridging. Our study, together with previous findings, supports a molecular model in which protein assemblies at telomeres are heterogeneous with distinct subcomplexes and full shelterin complexes playing distinct roles in telomere protection and elongation.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Moléculas de Adesão Celular/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Microscopia de Força Atômica/métodos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Complexo Shelterina/metabolismo , Complexo Shelterina/fisiologia , Telômero/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia
11.
Comput Struct Biotechnol J ; 19: 2819-2832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093995

RESUMO

Pathogenic DNA secondary structures have been identified as a common and causative factor for expansion in trinucleotide, hexanucleotide, and other simple sequence repeats. These expansions underlie about fifty neurological and neuromuscular disorders known as "anticipation diseases". Cell toxicity and death have been linked to the pathogenic conformations and functional changes of the RNA transcripts, of DNA itself and, when trinucleotides are present in exons, of the translated proteins. We review some of our results for the conformations and dynamics of pathogenic structures for both RNA and DNA, which include mismatched homoduplexes formed by trinucleotide repeats CAG and GAC; CCG and CGG; CTG(CUG) and GTC(GUC); the dynamics of DNA CAG hairpins; mismatched homoduplexes formed by hexanucleotide repeats (GGGGCC) and (GGCCCC); and G-quadruplexes formed by (GGGGCC) and (GGGCCT). We also discuss the dynamics of strand slippage in DNA hairpins formed by CAG repeats as observed with single-molecule Fluorescence Resonance Energy Transfer. This review focuses on the rich behavior exhibited by the mismatches associated with these simple sequence repeat noncanonical structures.

12.
ACS Cent Sci ; 6(7): 1159-1168, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32724850

RESUMO

Biological membranes have distinct geometries that confer specific functions. However, the molecular mechanisms underlying the phenomenological geometry/function correlations remain elusive. We studied the effect of membrane geometry on the localization of membrane-bound proteins. Quantitative comparative experiments between the two most abundant cellular membrane geometries, spherical and cylindrical, revealed that geometry regulates the spatial segregation of proteins. The measured geometry-driven segregation reached 50-fold for membranes of the same mean curvature, demonstrating a crucial and hitherto unaccounted contribution by Gaussian curvature. Molecular-field theory calculations elucidated the underlying physical and molecular mechanisms. Our results reveal that distinct membrane geometries have specific physicochemical properties and thus establish a ubiquitous mechanistic foundation for unravelling the conserved correlations between biological function and membrane polymorphism.

13.
Proc Natl Acad Sci U S A ; 117(30): 17775-17784, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669440

RESUMO

DNA mismatch repair (MMR), the guardian of the genome, commences when MutS identifies a mismatch and recruits MutL to nick the error-containing strand, allowing excision and DNA resynthesis. Dominant MMR models posit that after mismatch recognition, ATP converts MutS to a hydrolysis-independent, diffusive mobile clamp that no longer recognizes the mismatch. Little is known about the postrecognition MutS mobile clamp and its interactions with MutL. Two disparate frameworks have been proposed: One in which MutS-MutL complexes remain mobile on the DNA, and one in which MutL stops MutS movement. Here we use single-molecule FRET to follow the postrecognition states of MutS and the impact of MutL on its properties. In contrast to current thinking, we find that after the initial mobile clamp formation event, MutS undergoes frequent cycles of mismatch rebinding and mobile clamp reformation without releasing DNA. Notably, ATP hydrolysis is required to alter the conformation of MutS such that it can recognize the mismatch again instead of bypassing it; thus, ATP hydrolysis licenses the MutS mobile clamp to rebind the mismatch. Moreover, interaction with MutL can both trap MutS at the mismatch en route to mobile clamp formation and stop movement of the mobile clamp on DNA. MutS's frequent rebinding of the mismatch, which increases its residence time in the vicinity of the mismatch, coupled with MutL's ability to trap MutS, should increase the probability that MutS-MutL MMR initiation complexes localize near the mismatch.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , DNA/química , DNA/genética , Hidrólise , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas MutL/química , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Relação Estrutura-Atividade
14.
Proc Natl Acad Sci U S A ; 117(28): 16302-16312, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32586954

RESUMO

DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure-function properties of these obligate MutSα-MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα-MutLα-DNA complexes. We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS-MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas MutL/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Humanos , Complexos Multiproteicos/metabolismo , Proteínas MutL/química , Proteína 2 Homóloga a MutS/química , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Dobramento de Proteína , Multimerização Proteica
15.
Nucleic Acids Res ; 48(5): 2232-2245, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31974547

RESUMO

DNA trinucleotide repeats (TRs) can exhibit dynamic expansions by integer numbers of trinucleotides that lead to neurodegenerative disorders. Strand slipped hairpins during DNA replication, repair and/or recombination may contribute to TR expansion. Here, we combine single-molecule FRET experiments and molecular dynamics studies to elucidate slipping dynamics and conformations of (CAG)n TR hairpins. We directly resolve slipping by predominantly two CAG units. The slipping kinetics depends on the even/odd repeat parity. The populated states suggest greater stability for 5'-AGCA-3' tetraloops, compared with alternative 5'-CAG-3' triloops. To accommodate the tetraloop, even(odd)-numbered repeats have an even(odd) number of hanging bases in the hairpin stem. In particular, a paired-end tetraloop (no hanging TR) is stable in (CAG)n = even, but such situation cannot occur in (CAG)n = odd, where the hairpin is "frustrated'' and slips back and forth between states with one TR hanging at the 5' or 3' end. Trinucleotide interrupts in the repeating CAG pattern associated with altered disease phenotypes select for specific conformers with favorable loop sequences. Molecular dynamics provide atomic-level insight into the loop configurations. Reducing strand slipping in TR hairpins by sequence interruptions at the loop suggests disease-associated variations impact expansion mechanisms at the level of slipped hairpins.


Assuntos
DNA/química , Sequências Repetidas Invertidas , Repetições de Trinucleotídeos , Pareamento de Bases , Transferência Ressonante de Energia de Fluorescência , Cinética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Imagem Individual de Molécula , Termodinâmica
16.
Biomolecules ; 9(3)2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909517

RESUMO

The common conception of intrinsically disordered proteins (IDPs) is that they stochastically sample all possible configurations driven by thermal fluctuations. This is certainly true for many IDPs, which behave as swollen random coils that can be described using polymer models developed for homopolymers. However, the variability in interaction energy between different amino acid sequences provides the possibility that some configurations may be strongly preferred while others are forbidden. In compact globular IDPs, core hydration and packing density can vary between segments of the polypeptide chain leading to complex conformational dynamics. Here, we describe a growing number of proteins that appear intrinsically disordered by biochemical and bioinformatic characterization but switch between restricted regions of conformational space. In some cases, spontaneous switching between conformational ensembles was directly observed, but few methods can identify when an IDP is acting as a restricted chain. Such switching between disparate corners of conformational space could bias ligand binding and regulate the volume of IDPs acting as structural or entropic elements. Thus, mapping the accessible energy landscape and capturing dynamics across a wide range of timescales are essential to recognize when an IDP is acting as such a switch.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Humanos , Conformação Proteica
17.
Biomolecules ; 9(2)2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813315

RESUMO

Folded proteins show a high degree of structural order and undergo (fairly constrained) collective motions related to their functions. On the other hand, intrinsically disordered proteins (IDPs), while lacking a well-defined three-dimensional structure, do exhibit some structural and dynamical ordering, but are less constrained in their motions than folded proteins. The larger structural plasticity of IDPs emphasizes the importance of entropically driven motions. Many IDPs undergo function-related disorder-to-order transitions driven by their interaction with specific binding partners. As experimental techniques become more sensitive and become better integrated with computational simulations, we are beginning to see how the modest structural ordering and large amplitude collective motions of IDPs endow them with an ability to mediate multiple interactions with different partners in the cell. To illustrate these points, here, we use Prostate-associated gene 4 (PAGE4), an IDP implicated in prostate cancer (PCa) as an example. We first review our previous efforts using molecular dynamics simulations based on atomistic AWSEM to study the conformational dynamics of PAGE4 and how its motions change in its different physiologically relevant phosphorylated forms. Our simulations quantitatively reproduced experimental observations and revealed how structural and dynamical ordering are encoded in the sequence of PAGE4 and can be modulated by different extents of phosphorylation by the kinases HIPK1 and CLK2. This ordering is reflected in changing populations of certain secondary structural elements as well as in the regularity of its collective motions. These ordered features are directly correlated with the functional interactions of WT-PAGE4, HIPK1-PAGE4 and CLK2-PAGE4 with the AP-1 signaling axis. These interactions give rise to repeated transitions between (high HIPK1-PAGE4, low CLK2-PAGE4) and (low HIPK1-PAGE4, high CLK2-PAGE4) cell phenotypes, which possess differing sensitivities to the standard PCa therapies, such as androgen deprivation therapy (ADT). We argue that, although the structural plasticity of an IDP is important in promoting promiscuous interactions, the modulation of the structural ordering is important for sculpting its interactions so as to rewire with agility biomolecular interaction networks with significant functional consequences.


Assuntos
Antígenos de Neoplasias/química , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Antígenos de Neoplasias/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Conformação Proteica
19.
Biomolecules ; 8(4)2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413085

RESUMO

Intrinsically disordered proteins (IDPs) are often modeled using ideas from polymer physics that suggest they smoothly explore all corners of configuration space. Experimental verification of this random, dynamic behavior is difficult as random fluctuations of IDPs cannot be synchronized across an ensemble. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) is one of the few approaches that are sensitive to transient populations of sub-states within molecular ensembles. In some implementations, smFRET has sufficient time resolution to resolve transitions in IDP behaviors. Here we present experimental issues to consider when applying smFRET to study IDP configuration. We illustrate the power of applying smFRET to IDPs by discussing two cases in the literature of protein systems for which smFRET has successfully reported phosphorylation-induced modification (but not elimination) of the disordered properties that have been connected to impacts on the related biological function. The examples we discuss, PAGE4 and a disordered segment of the GluN2B subunit of the NMDA receptor, illustrate the great potential of smFRET to inform how IDP function can be regulated by controlling the detailed ensemble of disordered states within biological networks.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas Intrinsicamente Desordenadas/metabolismo , Imagem Individual de Molécula , Proteínas Intrinsicamente Desordenadas/química , Fosforilação
20.
Nucleic Acids Res ; 46(20): 10782-10795, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30272207

RESUMO

MutS homologs identify base-pairing errors made in DNA during replication and initiate their repair. In the presence of adenosine triphosphate, MutS induces DNA bending upon mismatch recognition and subsequently undergoes conformational transitions that promote its interaction with MutL to signal repair. In the absence of MutL, these transitions lead to formation of a MutS mobile clamp that can move along the DNA. Previous single-molecule FRET (smFRET) studies characterized the dynamics of MutS DNA-binding domains during these transitions. Here, we use protein-DNA and DNA-DNA smFRET to monitor DNA conformational changes, and we use kinetic analyses to correlate DNA and protein conformational changes to one another and to the steps on the pathway to mobile clamp formation. The results reveal multiple sequential structural changes in both MutS and DNA, and they suggest that DNA dynamics play a critical role in the formation of the MutS mobile clamp. Taking these findings together with data from our previous studies, we propose a unified model of coordinated MutS and DNA conformational changes wherein initiation of mismatch repair is governed by a balance of DNA bending/unbending energetics and MutS conformational changes coupled to its nucleotide binding properties.


Assuntos
Pareamento Incorreto de Bases/genética , Reparo de Erro de Pareamento de DNA , DNA/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Conformação de Ácido Nucleico , Pareamento de Bases/fisiologia , Reparo de Erro de Pareamento de DNA/genética , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Instabilidade Genômica/genética , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica/fisiologia , Conformação Proteica , Domínios Proteicos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...