Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 9: 101826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091658

RESUMO

Wind erosion is a process in which soil particles are detached from soils and transported downwind. One effective measure to reduce wind erosion are vegetated windbreaks such as hedgerows as they reduce wind speeds and likewise the forces which detach and transport soil particles. However, the planting of new windbreaks is driven by policy decisions as well as planning considerations. To get an initial idea of potential locations for new windbreaks, we present an automated routine as a model in ESRI ArcGIS Pro to propose plantation locations. The main input to the model is a wind erosion risk map. The results are potential locations for windbreaks that are ranked according to their suitability. The model parameters are adjustable, transferable to other regions and can be altered by to the user's needs.•Limit the wind erosion risk map to the most prone fields•Selection of unprotected sites perpendicular to the main wind direction•Suggestions for suitable sites for the potential planting of new windbreaks.

2.
MethodsX ; 6: 2118-2126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31667110

RESUMO

Surface soil structure is very responsive to natural and anthropogenic impacts and these changes alter soil hydraulic properties and the soil water budget. In the midst of a dearth of efforts to capture soil structural dynamics, an analytical solution to the Fokker-Planck Equation with physically-based coefficients has shown promising results in predicting the evolution of soil pore space in agricultural soils. In this study, the Python code for the analytical solution is shown along with steps to estimate coefficients leading towards obtaining the analytical solution. •Python code for modeling the evolution of soil pore space based on an existing model is shared.•The code for the estimation of physically-based coefficients of the model and parameter optimization are also shown.•The final output of the model may be used in estimation of soil water retention and hydraulic conductivity functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...