Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523845

RESUMO

Understanding dynamics across phase transformations and the spatial distribution of minerals in the lower mantle is crucial for a comprehensive model of the evolution of the Earth's interior. Using the multigrain crystallography technique (MGC) with synchrotron x-rays at pressures of 30 GPa in a laser-heated diamond anvil cell to study the formation of bridgmanite [(Mg,Fe)SiO3] and ferropericlase [(Mg,Fe)O], we report an interconnected network of a smaller grained ferropericlase, a configuration that has been implicated in slab stagnation and plume deflection in the upper part of the lower mantle. Furthermore, we isolated individual crystal orientations with grain-scale resolution, provide estimates on stress evolutions on the grain scale, and report {110} twinning in an iron-depleted bridgmanite, a mechanism that appears to aid stress relaxation during grain growth and likely contributes to the lack of any appreciable seismic anisotropy in the upper portion of the lower mantle.

2.
Proc Natl Acad Sci U S A ; 116(30): 14905-14909, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31292257

RESUMO

The study of orientation variant selection helps to reveal the mechanism and dynamic process of martensitic transformations driven by temperature or pressure/stress. This is challenging due to the multiple variants which may coexist. While effects of temperature and microstructure in many martensitic transformations have been studied in detail, effects of stress and pressure are much less understood. Here, an in situ variant selection study of Mn2O3 across the cubic-to-orthorhombic martensitic transformation explores orientation variants at pressures up to 51.5 GPa and stresses up to 5.5 GPa, using diamond anvil cells in radial geometry with synchrotron X-ray diffraction. The diamonds not only exert pressure but also impose stress and cause plastic deformation and texture development. The crystal orientation changes were followed in situ and a {110} c 〈001〉 c // (100) o 〈010〉 o relationship was observed. Only the {110} c plane perpendicular to the stress direction was selected to become (100) o , resulting in a very strong texture of the orthorhombic phase. Contrary to most other martensitic transformations, this study reveals a clear and simple variant selection that is attributed to structural distortions under pressure and stress.

3.
Nat Commun ; 8: 14669, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28416793

RESUMO

Crystallographic preferred orientation (CPO) of post-perovskite (Mg,Fe)SiO3 (pPv) has been believed to be one potential source of the seismic anisotropic layer at the bottom of the lower mantle (D″ layer). However, the natural CPO of pPv remains ambiguous in the D″ layer. Here we have carried out the deformation experiments of pPv-(Mg0.75,Fe0.25)SiO3 using synchrotron radial X-ray diffraction in a membrane-driven laser-heated diamond anvil cell from 135 GPa and 2,500 K to 154 GPa and 3,000 K. Our results show that the intrinsic texture of pPv-(Mg0.75,Fe0.25)SiO3 should be (001) at realistic P-T conditions of the D″ layer, which can produce a shear wave splitting anisotropy of ∼3.7% with VSH>VSV. Considering the combined effect of both pPv and ferropericlase, we suggest that 50% or less of deformation is sufficient to explain the origin of the shear wave anisotropy observed seismically in the D″ layer beneath the circum-Pacific rim.

4.
Proc Natl Acad Sci U S A ; 111(52): 18484-9, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512521

RESUMO

The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.

5.
Rev Sci Instrum ; 84(2): 025118, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464262

RESUMO

To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate and optimize conditions for combined resistive and laser heating. For example, in Run#1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run#2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg0.9Fe0.1)O in Run#3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.

6.
J Synchrotron Radiat ; 20(Pt 1): 172-80, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23254671

RESUMO

Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small grain size, low but significant amount of porosity, as well as strong shape- and lattice-preferred orientation. The goals of this round-robin project were to (i) characterize microstructures and porosity on the micrometer scale, (ii) compare results measured at three synchrotron facilities, and (iii) identify optimal experimental conditions of high-resolution SRXTM for fine-grained materials. SRXTM data of these shales were acquired under similar conditions at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory, USA, the Advanced Photon Source (APS) of Argonne National Laboratory, USA, and the Swiss Light Source (SLS) of the Paul Scherrer Institut, Switzerland. The data reconstruction of all datasets was handled under the same procedures in order to compare the data quality and determine phase proportions and microstructures. With a 10× objective lens the spatial resolution is approximately 2 µm. The sharpness of phase boundaries in the reconstructed data collected from the APS and SLS was comparable and slightly more refined than in the data obtained from the ALS. Important internal features, such as pyrite (high-absorbing), and low-density features, including pores, fractures and organic matter or kerogen (low-absorbing), were adequately segmented on the same basis. The average volume fractions of low-density features for sample N1 and B1 were estimated at 6.3 (6)% and 4.5 (4)%, while those of pyrite were calculated to be 5.6 (6)% and 2.0 (3)%, respectively. The discrepancy of data quality and volume fractions were mainly due to different types of optical instruments and varying technical set-ups at the ALS, APS and SLS.

7.
Science ; 338(6113): 1448-51, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23239731

RESUMO

The size of nanocrystals provides a limitation on dislocation activity and associated stress-induced deformation. Dislocation-mediated plastic deformation is expected to become inactive below a critical particle size, which has been proposed to be between 10 and 30 nanometers according to computer simulations and transmission electron microscopy analysis. However, deformation experiments at high pressure on polycrystalline nickel suggest that dislocation activity is still operative in 3-nanometer crystals. Substantial texturing is observed at pressures above 3.0 gigapascals for 500-nanometer nickel and at greater than 11.0 gigapascals for 20-nanometer nickel. Surprisingly, texturing is also seen in 3-nanometer nickel when compressed above 18.5 gigapascals. The observations of pressure-promoted texturing indicate that under high external pressures, dislocation activity can be extended down to a few-nanometers-length scale.

8.
Science ; 329(5999): 1639-41, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20929846

RESUMO

Understanding deformation of mineral phases in the lowermost mantle is important for interpreting seismic anisotropy in Earth's interior. Recently, there has been considerable controversy regarding deformation-induced slip in MgSiO(3) post-perovskite. Here, we observe that (001) lattice planes are oriented at high angles to the compression direction immediately after transformation and before deformation. Upon compression from 148 gigapascals (GPa) to 185 GPa, this preferred orientation more than doubles in strength, implying slip on (001) lattice planes. This contrasts with a previous experiment that recorded preferred orientation likely generated during the phase transformation rather than deformation. If we use our results to model deformation and anisotropy development in the D'' region of the lower mantle, shear-wave splitting (characterized by fast horizontally polarized shear waves) is consistent with seismic observations.

9.
Rev Sci Instrum ; 80(10): 104501, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19895077

RESUMO

We introduce the design and capabilities of a resistive heated diamond anvil cell that can be used for side diffraction at simultaneous high pressure and high temperature. The device can be used to study lattice-preferred orientations in polycrystalline samples up to temperatures of 1100 K and pressures of 36 GPa. Capabilities of the instrument are demonstrated with preliminary results on the development of textures in the bcc, fcc, and hcp polymorphs of iron during a nonhydrostatic compression experiment at simultaneous high pressure and high temperature.

10.
Rev Sci Instrum ; 78(6): 063907, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17614626

RESUMO

We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.


Assuntos
Diamante , Calefação/instrumentação , Lasers , Manejo de Espécimes/instrumentação , Síncrotrons/instrumentação , Difração de Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Science ; 316(5832): 1729-32, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17588926

RESUMO

Polycrystalline (Mg(0.9),Fe(0.1))SiO3 post-perovskite was plastically deformed in the diamond anvil cell between 145 and 157 gigapascals. The lattice-preferred orientations obtained in the sample suggest that slip on planes near (100) and (110) dominate plastic deformation under these conditions. Assuming similar behavior at lower mantle conditions, we simulated plastic strains and the contribution of post-perovskite to anisotropy in the D'' region at the Earth core-mantle boundary using numerical convection and viscoplastic polycrystal plasticity models. We find a significant depth dependence of the anisotropy that only develops near and beyond the turning point of a downwelling slab. Our calculated anisotropies are strongly dependent on the choice of elastic moduli and remain hard to reconcile with seismic observations.

12.
Science ; 311(5761): 644-6, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16456075

RESUMO

Polycrystalline MgGeO3 post-perovskite was plastically deformed in the diamond anvil cell between 104 and 130 gigapascals confining pressure and ambient temperature. In contrast with phenomenological considerations suggesting (010) as a slip plane, lattice planes near (100) became aligned perpendicular to the compression direction, suggesting that slip on (100) or (110) dominated plastic deformation. With the assumption that silicate post-perovskite behaves similarly at lower mantle conditions, a numerical model of seismic anisotropy in the D'' region implies a maximum contribution of post-perovskite to shear wave splitting of 3.7% with an oblique polarization.

13.
J Phys Condens Matter ; 18(25): S995-S1005, 2006 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22611108

RESUMO

The Rietveld method is used to extract quantitative texture information from a single synchrotron diffraction image of a CaSiO(3) perovskite sample deformed in axial compression in a diamond anvil cell. The image used for analysis was taken in radial geometry at 49 GPa and room temperature. We obtain a preferred orientation of {100} lattice planes oriented perpendicular to the compression direction and this is compatible with [Formula: see text] slip.

14.
J Synchrotron Radiat ; 12(Pt 3): 354-60, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15840922

RESUMO

A Rietveld method is described which extracts information on crystal structure, texture and microstructure directly from two-dimensional synchrotron diffraction images. This is advantageous over conventional texture analysis that relies on individual diffraction peaks, particularly for low-symmetry materials with many overlapping peaks and images with a poor peak-to-background ratio. The method is applied to two mineralized biological samples with hydroxylapatite fabrics: an ossified pachycephalosaurid dinosaur tendon and an Atlantic salmon scale. Both are measured using monochromatic synchrotron X-rays. The dinosaur tendon has very strongly oriented crystals with c-axes parallel to the tendon direction. The salmon scale displays a weak texture.


Assuntos
Cristalografia por Raios X/métodos , Durapatita/química , Tendões/química , Animais , Cristalização , Dinossauros , Fotomicrografia , Salmão , Propriedades de Superfície , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...