Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771127

RESUMO

The structure elucidation of small organic molecules (<1500 Dalton) through 1D and 2D nuclear magnetic resonance (NMR) data analysis is a potentially challenging, combinatorial problem. This publication presents Sherlock, a free and open-source Computer-Assisted Structure Elucidation (CASE) software where the user controls the chain of elementary operations through a versatile graphical user interface, including spectral peak picking, addition of automatically or user-defined structure constraints, structure generation, ranking and display of the solutions. A set of forty-five compounds was selected in order to illustrate the new possibilities offered to organic chemists by Sherlock for improving the reliability and traceability of structure elucidation results.

2.
Nucleic Acids Res ; 44(9): e89, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26893356

RESUMO

Annotation of protein-coding genes is very important in bioinformatics and biology and has a decisive influence on many downstream analyses. Homology-based gene prediction programs allow for transferring knowledge about protein-coding genes from an annotated organism to an organism of interest.Here, we present a homology-based gene prediction program called GeMoMa. GeMoMa utilizes the conservation of intron positions within genes to predict related genes in other organisms. We assess the performance of GeMoMa and compare it with state-of-the-art competitors on plant and animal genomes using an extended best reciprocal hit approach. We find that GeMoMa often makes more precise predictions than its competitors yielding a substantially increased number of correct transcripts. Subsequently, we exemplarily validate GeMoMa predictions using Sanger sequencing. Finally, we use RNA-seq data to compare the predictions of homology-based gene prediction programs, and find again that GeMoMa performs well.Hence, we conclude that exploiting intron position conservation improves homology-based gene prediction, and we make GeMoMa freely available as command-line tool and Galaxy integration.


Assuntos
Biologia Computacional/métodos , Modelos Genéticos , Anotação de Sequência Molecular/métodos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Algoritmos , Animais , Arabidopsis/genética , Sequência de Bases , Carica/genética , Galinhas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons/genética , Camundongos , Oryza/genética , Reação em Cadeia da Polimerase , Homologia de Sequência do Ácido Nucleico , Solanum tuberosum/genética , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...