Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(12): 3015-3028, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856445

RESUMO

The accuracy of the absolute radiometric calibration (RadCal) for remote sensing instruments is essential to their wide range of applications. The uncertainty associated with the traditional source-based RadCal method is assessed at a 2% (k=1) or higher level for radiance measurement. To further improve the accuracy to meet the demands of climate studies, a detector-based approach using tunable lasers as a light source has been devised. The Goddard Laser for Absolute Measurement of Radiance, known as the GLAMR system, is a notable example of the incorporation of such technology. Using transfer radiometers calibrated at the National Institute of Standards and Technology as calibration standards, the absolute spectral response function of a remote sensing instrument is measured with its uncertainty traceable to the International System of Units. This paper presents a comprehensive uncertainty analysis of the detector-based absolute RadCal using the GLAMR system. It identifies and examines uncertainty sources during the GLAMR RadCal test, including those from the GLAMR system, the testing configuration, and data processing methodologies. Analysis is carried out to quantify the contribution of each source and emphasize the most influential factors. It is shown that the calibration uncertainty of GLAMR RadCal can be better than 0.3% (k=1) in the wavelength range of 350-950 nm and 0.6% (k=1) between 950 and 2300 nm, with the exception of regions with strong water absorption. In addition, recommendations are made to refine the calibration process to further reduce the uncertainty.

2.
Appl Opt ; 61(6): 1357-1368, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201017

RESUMO

Understanding the uncertainty of a vicarious calibration is essential for any application to Earth imaging sensors. The Radiometric Calibration Network provides SI-traceable spectral top-of-atmosphere (TOA) reflectance from a network of ground sites and uses a look-up table (LUT) approach for uncertainty determination. The uncertainty LUT was derived using Monte Carlo techniques applied to the relevant solar geometry, surface, and atmospheric variables. While surface reflectance is typically the dominant uncertainty source, atmospheric contributions do play an important role, depending upon the exact scenario and conditions. This approach allows knowledge of TOA reflectance uncertainty to within 0.5%.

3.
Metrologia ; 55(3): S104-S117, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32601509

RESUMO

A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.

4.
IEEE Trans Geosci Remote Sens ; 54(6): 3221-3234, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32818005

RESUMO

The MODerate-resolution Imaging Spectroradiometer (MODIS) is a premier Earth observing sensor of the early 21st Century, flying on-board the Terra (T) and Aqua (A) spacecrafts. Both instruments far exceeded their 6 year design life and continue to operate satisfactorily for more than 15 and 13 years, respectively. The MODIS instrument is designed to make observations at nearly a 100% duty cycle covering the entire Earth in less than 2 days. The MODIS sensor characteristics include a spectral coverage from 0.41 µm - 14.4 µm, of which those wavelengths ranging from 3.7 µm - 14. 4 µm cover the thermal infrared region which is interspaced in 16 Thermal Emissive Bands (TEB). Each of the TEB contains 10 detectors which record samples at a spatial resolution of 1 km. In order to ensure a high level of accuracy for the TEB measured Top Of Atmosphere (TOA) radiances, an onboard BlackBody (BB) is used as the calibration source. This paper reports the noise characterization and performance of the TEB on various counts. First, the stability of the onboard BB is evaluated to understand the effectiveness of the calibration source. Next, key noise metrics such as the Noise Equivalent Temperature difference (NEdT) and the Noise Equivalent dn difference (NEdN) for the various TEB are determined from multiple temperature sources. These sources include the nominally controlled BB temperature of 290 K for T-MODIS and 285 K for A-MODIS, as well as a BB Warm Up - Cool Down (WUCD) cycle that is performed over a temperature range from roughly 270 K - 315 K. The Space View (SV) port that measures the background signal serves as a viable cold temperature source for measuring noise. In addition, a well characterized Earth View (EV) Target, the Dome C site located in the Antarctic plateau, is used for characterizing the stability of the sensor, indirectly providing a measure of the NEdN. Based on this rigorous characterization, a list of the noisy and inoperable detectors for the TEB for both instruments is reported to provide the science user communities quality control of the MODIS Level 1B calibrated product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...