Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(28): eadn4824, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985872

RESUMO

Molecular chaperones are central to the maintenance of proteostasis in living cells. A key member of this protein family is trigger factor (TF), which acts throughout the protein life cycle and has a ubiquitous role as the first chaperone encountered by proteins during synthesis. However, our understanding of how TF achieves favorable interactions with such a diverse substrate base remains limited. Here, we use microfluidics to reveal the thermodynamic determinants of this process. We find that TF binding to empty 70S ribosomes is enthalpy-driven, with micromolar affinity, while nanomolar affinity is achieved through a favorable entropic contribution for both intrinsically disordered and folding-competent nascent chains. These findings suggest a general mechanism for cotranslational TF function, which relies on occupation of the exposed TF-substrate binding groove rather than specific complementarity between chaperone and nascent chain. These insights add to our wider understanding of how proteins can achieve broad substrate specificity.


Assuntos
Ligação Proteica , Termodinâmica , Especificidade por Substrato , Biossíntese de Proteínas , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ribossomos/metabolismo , Dobramento de Proteína , Peptidilprolil Isomerase
2.
Mol Cell ; 84(8): 1512-1526.e9, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508184

RESUMO

J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified ß-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the ß-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP ß-hairpin as a highly specific target for cancer therapeutics.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína
4.
Nature ; 587(7834): 483-488, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177717

RESUMO

The deposition of highly ordered fibrillar-type aggregates into inclusion bodies is a hallmark of neurodegenerative diseases such as Parkinson's disease. The high stability of such amyloid fibril aggregates makes them challenging substrates for the cellular protein quality-control machinery1,2. However, the human HSP70 chaperone and its co-chaperones DNAJB1 and HSP110 can dissolve preformed fibrils of the Parkinson's disease-linked presynaptic protein α-synuclein in vitro3,4. The underlying mechanisms of this unique activity remain poorly understood. Here we use biochemical tools and nuclear magnetic resonance spectroscopy to determine the crucial steps of the disaggregation process of amyloid fibrils. We find that DNAJB1 specifically recognizes the oligomeric form of α-synuclein via multivalent interactions, and selectively targets HSP70 to fibrils. HSP70 and DNAJB1 interact with the fibril through exposed, flexible amino and carboxy termini of α-synuclein rather than the amyloid core itself. The synergistic action of DNAJB1 and HSP110 strongly accelerates disaggregation by facilitating the loading of several HSP70 molecules in a densely packed arrangement at the fibril surface, which is ideal for the generation of 'entropic pulling' forces. The cooperation of DNAJB1 and HSP110 in amyloid disaggregation goes beyond the classical substrate targeting and recycling functions that are attributed to these HSP70 co-chaperones and constitutes an active and essential contribution to the remodelling of the amyloid substrate. These mechanistic insights into the essential prerequisites for amyloid disaggregation may provide a basis for new therapeutic interventions in neurodegeneration.


Assuntos
Amiloide/química , Amiloide/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/metabolismo , Entropia , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/análise , Humanos , Hidrólise , Modelos Biológicos , Doença de Parkinson/metabolismo
5.
Nature ; 587(7834): 489-494, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177718

RESUMO

The ubiquitous heat shock protein 70 (HSP70) family consists of ATP-dependent molecular chaperones, which perform numerous cellular functions that affect almost all aspects of the protein life cycle from synthesis to degradation1-3. Achieving this broad spectrum of functions requires precise regulation of HSP70 activity. Proteins of the HSP40 family, also known as J-domain proteins (JDPs), have a key role in this process by preselecting substrates for transfer to their HSP70 partners and by stimulating the ATP hydrolysis of HSP70, leading to stable substrate binding3,4. In humans, JDPs constitute a large and diverse family with more than 40 different members2, which vary in their substrate selectivity and in the nature and number of their client-binding domains5. Here we show that JDPs can also differ fundamentally in their interactions with HSP70 chaperones. Using nuclear magnetic resonance spectroscopy6,7 we find that the major class B JDPs are regulated by an autoinhibitory mechanism that is not present in other classes. Although in all JDPs the interaction of the characteristic J-domain is responsible for the activation of HSP70, in DNAJB1 the HSP70-binding sites in this domain are intrinsically blocked by an adjacent glycine-phenylalanine rich region-an inhibition that can be released upon the interaction of a second site on DNAJB1 with the HSP70 C-terminal tail. This regulation, which controls substrate targeting to HSP70, is essential for the disaggregation of amyloid fibres by HSP70-DNAJB1, illustrating why no other class of JDPs can substitute for class B in this function. Moreover, this regulatory layer, which governs the functional specificities of JDP co-chaperones and their interactions with HSP70s, could be key to the wide range of cellular functions of HSP70.


Assuntos
Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Amiloide/química , Amiloide/metabolismo , Sítios de Ligação , Glicina/metabolismo , Proteínas de Choque Térmico HSP70/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutação , Fenilalanina/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica/genética , Domínios Proteicos , Deleção de Sequência , Especificidade por Substrato , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
6.
J Biol Chem ; 295(28): 9676-9690, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32467226

RESUMO

The accumulation of amyloid Tau aggregates is implicated in Alzheimer's disease (AD) and other tauopathies. Molecular chaperones are known to maintain protein homeostasis. Here, we show that an ATP-dependent human chaperone system disassembles Tau fibrils in vitro We found that this function is mediated by the core chaperone HSC70, assisted by specific cochaperones, in particular class B J-domain proteins and a heat shock protein 110 (Hsp110)-type nucleotide exchange factor (NEF). The Hsp70 disaggregation machinery processed recombinant fibrils assembled from all six Tau isoforms as well as Sarkosyl-resistant Tau aggregates extracted from cell cultures and human AD brain tissues, demonstrating the ability of the Hsp70 machinery to recognize a broad range of Tau aggregates. However, the chaperone activity released monomeric and small oligomeric Tau species, which induced the aggregation of self-propagating Tau conformers in a Tau cell culture model. We conclude that the activity of the Hsp70 disaggregation machinery is a double-edged sword, as it eliminates Tau amyloids at the cost of generating new seeds.


Assuntos
Doença de Alzheimer , Amiloide , Encéfalo , Proteínas de Choque Térmico HSP70 , Proteínas tau , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Células HEK293 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
7.
J Biol Chem ; 295(21): 7301-7316, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32284329

RESUMO

Heat shock protein 70 (HSP70) chaperones play a central role in protein quality control and are crucial for many cellular processes, including protein folding, degradation, and disaggregation. Human HSP70s compose a family of 13 members that carry out their functions with the aid of even larger families of co-chaperones. A delicate interplay between HSP70s and co-chaperone recruitment is thought to determine substrate fate, yet it has been generally assumed that all Hsp70 paralogs have similar activities and are largely functionally redundant. However, here we found that when expressed in human cells, two highly homologous HSP70s, HSPA1A and HSPA1L, have opposing effects on cellular handling of various substrates. For example, HSPA1A reduced aggregation of the amyotrophic lateral sclerosis-associated protein variant superoxide dismutase 1 (SOD1)-A4V, whereas HSPA1L enhanced its aggregation. Intriguingly, variations in the substrate-binding domain of these HSP70s did not play a role in this difference. Instead, we observed that substrate fate is determined by differential interactions of the HSP70s with co-chaperones. Whereas most co-chaperones bound equally well to these two HSP70s, Hsp70/Hsp90-organizing protein (HOP) preferentially bound to HSPA1L, and the Hsp110 nucleotide-exchange factor HSPH2 preferred HSPA1A. The role of HSPH2 was especially crucial for the HSPA1A-mediated reduction in SOD1-A4V aggregation. These findings reveal a remarkable functional diversity at the level of the cellular HSP70s and indicate that this diversity is defined by their affinities for specific co-chaperones such as HSPH2.


Assuntos
Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Homeodomínio/química , Agregação Patológica de Proteínas , Superóxido Dismutase-1/química , Proteínas Supressoras de Tumor/química , Substituição de Aminoácidos , Linhagem Celular Tumoral , Células HEK293 , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Homeodomínio/genética , Humanos , Mutação de Sentido Incorreto , Superóxido Dismutase-1/genética , Proteínas Supressoras de Tumor/genética
8.
Proc Natl Acad Sci U S A ; 115(39): 9744-9749, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201720

RESUMO

Cotranslational folding (CTF) is a fundamental molecular process that ensures efficient protein biosynthesis and minimizes the formation of misfolded states. However, the complexity of this process makes it extremely challenging to obtain structural characterizations of CTF pathways. Here, we correlate observations of translationally arrested nascent chains with those of a systematic C-terminal truncation strategy. We create a detailed description of chain length-dependent free energy landscapes associated with folding of the FLN5 filamin domain, in isolation and on the ribosome, and thus, quantify a substantial destabilization of the native structure on the ribosome. We identify and characterize two folding intermediates formed in isolation, including a partially folded intermediate associated with the isomerization of a conserved cis proline residue. The slow folding associated with this process raises the prospect that neighboring unfolded domains might accumulate and misfold during biosynthesis. We develop a simple model to quantify the risk of misfolding in this situation and show that catalysis of folding by peptidyl-prolyl isomerases is sufficient to eliminate this hazard.


Assuntos
Filaminas/biossíntese , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dobramento de Proteína , Modificação Traducional de Proteínas , Deficiências na Proteostase/metabolismo , Ribossomos/metabolismo , Sequências de Repetição em Tandem , Termodinâmica
9.
Trends Biochem Sci ; 43(4): 285-300, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29501325

RESUMO

Protein aggregates are formed in cells with profoundly perturbed proteostasis, where the generation of misfolded proteins exceeds the cellular refolding and degradative capacity. They are a hallmark of protein conformational disorders and aged and/or environmentally stressed cells. Protein aggregation is a reversible process in vivo, which counteracts proteotoxicities derived from aggregate persistence, but the chaperone machineries involved in protein disaggregation in Metazoa were uncovered only recently. Here we highlight recent advances in the mechanistic understanding of the major protein disaggregation machinery mediated by the Hsp70 chaperone system and discuss emerging alternative disaggregation activities in multicellular organisms.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Agregados Proteicos , Animais , Humanos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/prevenção & controle , Conformação Proteica
10.
Nature ; 539(7629): 448-451, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27783598

RESUMO

The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Pinças Ópticas , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Redobramento de Proteína , Estabilidade Proteica , Imagem Individual de Molécula , Especificidade por Substrato
11.
Proc Natl Acad Sci U S A ; 113(18): 5012-7, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27092002

RESUMO

The ribosome is increasingly becoming recognized as a key hub for integrating quality control processes associated with protein biosynthesis and cotranslational folding (CTF). The molecular mechanisms by which these processes take place, however, remain largely unknown, in particular in the case of intrinsically disordered proteins (IDPs). To address this question, we studied at a residue-specific level the structure and dynamics of ribosome-nascent chain complexes (RNCs) of α-synuclein (αSyn), an IDP associated with Parkinson's disease (PD). Using solution-state nuclear magnetic resonance (NMR) spectroscopy and coarse-grained molecular dynamics (MD) simulations, we find that, although the nascent chain (NC) has a highly disordered conformation, its N-terminal region shows resonance broadening consistent with interactions involving specific regions of the ribosome surface. We also investigated the effects of the ribosome-associated molecular chaperone trigger factor (TF) on αSyn structure and dynamics using resonance broadening to define a footprint of the TF-RNC interactions. We have used these data to construct structural models that suggest specific ways by which emerging NCs can interact with the biosynthesis and quality control machinery.


Assuntos
Modelos Químicos , Simulação de Acoplamento Molecular , Ribossomos/química , Ribossomos/ultraestrutura , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Propriedades de Superfície
12.
Nat Struct Mol Biol ; 23(4): 278-285, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26926436

RESUMO

Although detailed pictures of ribosome structures are emerging, little is known about the structural and cotranslational folding properties of nascent polypeptide chains at the atomic level. Here we used solution-state NMR spectroscopy to define a structural ensemble of a ribosome-nascent chain complex (RNC) formed during protein biosynthesis in Escherichia coli, in which a pair of immunoglobulin-like domains adopts a folded N-terminal domain (FLN5) and a disordered but compact C-terminal domain (FLN6). To study how FLN5 acquires its native structure cotranslationally, we progressively shortened the RNC constructs. We found that the ribosome modulates the folding process, because the complete sequence of FLN5 emerged well beyond the tunnel before acquiring native structure, whereas FLN5 in isolation folded spontaneously, even when truncated. This finding suggests that regulating structure acquisition during biosynthesis can reduce the probability of misfolding, particularly of homologous domains.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Ribossomos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Biossíntese de Proteínas , Dobramento de Proteína , Estrutura Terciária de Proteína , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...