Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(34): 57231-57245, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915667

RESUMO

Non-invasive imaging using radiolabels is a common technique used to study the biodistribution of biologics. Due to the limited shelf-life of radiolabels and the requirements of specialized labs, non-invasive optical imaging is an attractive alternative for preclinical studies. Previously, we demonstrated the utility of fluorescence molecular tomography (FMT) an optical imaging modality in evaluating the biodistribution of antibody-drug conjugates. As FMT is a relatively new technology, few fluorophores have been validated for in vivo imaging. The goal of this study was to characterize and determine the utility of near-infrared (NIR) fluorophores for biodistribution studies using interleukin-13 receptor subunit alpha-2 antibody (IL13Rα2-Ab). Eight fluorophores (ex/em: 630/800 nm) with an N-hydroxysuccinimide (NHS) linker were evaluated for Ab conjugation. The resulting antibody-fluorophore (Ab-F) conjugates were evaluated in vitro for degree of conjugation, stability and target-binding, followed by in vivo/ex vivo FMT imaging to determine biodistribution in a xenograft model. The Ab-F conjugates (except Ab-DyLight800) showed good in vitro stability and antigen binding. All Ab-F conjugates (except for Ab-BOD630) resulted in a quantifiable signal in vivo and had similar biodistribution profiles, with peak tumor accumulation between 6 and 24 h post-injection. In vivo/ex vivo FMT imaging showed 17-34% ID/g Ab uptake by the tumor at 96 h. Overall, this is the first study to characterize the biodistribution of an Ab using eight NIR fluorophores. Our results show that 3-dimensional optical imaging is a valuable technology to understand biodistribution and targeting, but a careful selection of the fluorophore for each Ab is warranted.

2.
AAPS J ; 18(5): 1300-1308, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27401185

RESUMO

There are many sources of analytical variability in ligand binding assays (LBA). One strategy to reduce variability has been duplicate analyses. With recent advances in LBA technologies, it is conceivable that singlet analysis is possible. We retrospectively evaluated singlet analysis using Gyrolab data. Relative precision of duplicates compared to singlets was evaluated using 60 datasets from toxicokinetic (TK) or pharmacokinetic (PK) studies which contained over 23,000 replicate pairs composed of standards, quality control (QC), and animal samples measured with 23 different bioanalytical assays. The comparison was first done with standard curve and QCs followed by PK parameters (i.e., Cmax and AUC). Statistical analyses were performed on combined duplicate versus singlets using a concordance correlation coefficient (CCC), a measurement used to assess agreement. Variance component analyses were conducted on PK estimates to assess the relative analytical and biological variability. Overall, 97.5% of replicate pairs had a %CV of <11% and 50% of the results had a %CV of ≤1.38%. There was no observable bias in concentration comparing the first replicate with the second (CCC of 0.99746 and accuracy value of 1). The comparison of AUC and Cmax showed no observable difference between singlet and duplicate (CCC for AUC and Cmax >0.99999). Analysis of variance indicated an AUC inter-subject variability 35.3-fold greater than replicate variability and 8.5-fold greater for Cmax. Running replicates from the same sample will not significantly reduce variation or change PK parameters. These analyses indicated the majority of variance was inter-subject and supported the use of a singlet strategy.


Assuntos
Bases de Dados Factuais , Estudos de Viabilidade , Ligantes , Preparações Farmacêuticas/metabolismo , Estatística como Assunto/métodos , Animais , Haplorrinos , Camundongos , Preparações Farmacêuticas/análise , Ligação Proteica/fisiologia , Ratos , Estudos Retrospectivos
3.
Mol Cancer Ther ; 15(10): 2530-2540, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27466353

RESUMO

Understanding a drug's whole-body biodistribution and tumor targeting can provide important information regarding efficacy, safety, and dosing parameters. Current methods to evaluate biodistribution include in vivo imaging technologies like positron electron tomography and single-photon emission computed tomography or ex vivo quantitation of drug concentrations in tissues using autoradiography and standard biochemical assays. These methods use radioactive compounds or are cumbersome and do not give whole-body information. Here, for the first time, we show the utility of fluorescence molecular tomography (FMT) imaging to determine the biodistribution and targeting of an antibody-drug conjugate (ADC). An anti-5T4-antibody (5T4-Ab) and 5T4-ADC were conjugated with a near-infrared (NIR) fluorophore VivoTag 680XL (VT680). Both conjugated compounds were stable as determined by SEC-HPLC and plasma stability studies. Flow cytometry and fluorescence microscopy studies showed that VT680-conjugated 5T4-ADC specifically bound 5T4-expressing cells in vitro and also exhibited a similar cytotoxicity profile as the unconjugated 5T4-ADC. In vivo biodistribution and tumor targeting in an H1975 subcutaneous xenograft model demonstrated no significant differences between accumulation of VT680-conjugated 5T4-Ab or 5T4-ADC in either normal tissues or tumor. In addition, quantitation of heart signal from FMT imaging showed good correlation with the plasma pharmacokinetic profile suggesting that it (heart FMT imaging) may be a surrogate for plasma drug clearance. These results demonstrate that conjugation of VT680 to 5T4-Ab or 5T4-ADC does not change the behavior of native biologic, and FMT imaging can be a useful tool to understand biodistribution and tumor-targeting kinetics of antibodies, ADCs, and other biologics. Mol Cancer Ther; 15(10); 2530-40. ©2016 AACR.


Assuntos
Antineoplásicos/farmacocinética , Imunoconjugados/farmacocinética , Glicoproteínas de Membrana/antagonistas & inibidores , Neoplasias/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fluorescência , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Imagem Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Bioconjug Chem ; 26(11): 2223-32, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26180901

RESUMO

The pharmacokinetics of an antibody (huA1)-drug (auristatin microtubule disrupting MMAF) conjugate, targeting 5T4-expressing cells, were characterized during the discovery and development phases in female nu/nu mice and cynomolgus monkeys after a single dose and in S-D rats and cynomolgus monkeys from multidose toxicity studies. Plasma/serum samples were analyzed using an ELISA-based method for antibody and conjugate (ADC) as well as for the released payload using an LC-MS/MS method. In addition, the distribution of the Ab, ADC, and released payload (cys-mcMMAF) was determined in a number of tissues (tumor, lung, liver, kidney, and heart) in two tumor mouse models (H1975 and MDA-MB-361-DYT2 models) using similar LBA and LC-MS/MS methods. Tissue distribution studies revealed preferential tumor distribution of cys-mcMMAF and its relative specificity to the 5T4 target containing tissue (tumor). Single dose studies suggests lower CL values at the higher doses in mice, although a linear relationship was seen in cynomolgus monkeys at doses from 0.3 to 10 mg/kg with no evidence of TMDD. Evaluation of DAR (drug-antibody ratio) in cynomolgus monkeys (at 3 mg/kg) indicated that at least half of the payload was still on the ADC 1 to 2 weeks after IV dosing. After multiple doses, the huA1 and conjugate data in rats and monkeys indicate that exposure (AUC) increases with increasing dose in a linear fashion. Systemic exposure (as assessed by Cmax and AUC) of the released payload increased with increasing dose, although exposure was very low and its pharmacokinetics appeared to be formation rate limited. The incidence of ADA was generally low in rats and monkeys. We will discuss cross species comparison, relationships between the Ab, ADC, and released payload exposure after multiple dosing, and insights into the distribution of this ADC with a focus on experimental design as a way to address or bypass apparent obstacles and its integration into predictive models.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Imunoconjugados/farmacocinética , Glicoproteínas de Membrana/imunologia , Oligopeptídeos/farmacocinética , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Macaca fascicularis , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Oligopeptídeos/química , Oligopeptídeos/imunologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
5.
AAPS J ; 16(3): 452-63, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24578215

RESUMO

The objectives of this investigation were as follows: (a) to validate a mechanism-based pharmacokinetic (PK) model of ADC for its ability to a priori predict tumor concentrations of ADC and released payload, using anti-5T4 ADC A1mcMMAF, and (b) to analyze the PK model to find out main pathways and parameters model outputs are most sensitive to. Experiential data containing biomeasures, and plasma and tumor concentrations of ADC and payload, following A1mcMMAF administration in two different xenografts, were used to build and validate the model. The model performed reasonably well in terms of a priori predicting tumor exposure of total antibody, ADC, and released payload, and the exposure of released payload in plasma. Model predictions were within two fold of the observed exposures. Pathway analysis and local sensitivity analysis were conducted to investigate main pathways and set of parameters the model outputs are most sensitive to. It was discovered that payload dissociation from ADC and tumor size were important determinants of plasma and tumor payload exposure. It was also found that the sensitivity of the model output to certain parameters is dose-dependent, suggesting caution before generalizing the results from the sensitivity analysis. Model analysis also revealed the importance of understanding and quantifying the processes responsible for ADC and payload disposition within tumor cell, as tumor concentrations were sensitive to these parameters. Proposed ADC PK model provides a useful tool for a priori predicting tumor payload concentrations of novel ADCs preclinically, and possibly translating them to the clinic.


Assuntos
Aminobenzoatos/química , Aminobenzoatos/farmacocinética , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Imunoconjugados/química , Imunoconjugados/farmacocinética , Glicoproteínas de Membrana/metabolismo , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Animais , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Camundongos , Modelos Biológicos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...