Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(8): 839-863, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453162

RESUMO

Cyclic nucleotides are the most diversified category of second messengers and are found in all organisms modulating diverse pathways. While cAMP and cGMP have been studied over 50 years, cyclic di-nucleotide signaling in eukaryotes emerged only recently with the anti-viral molecule 2´3´cGAMP. Recent breakthrough discoveries have revealed not only the astonishing chemical diversity of cyclic nucleotides but also surprisingly deep-rooted evolutionary origins of cyclic oligo-nucleotide signaling pathways and structural conservation of the proteins involved in their synthesis and signaling. Here we discuss how enzyme-centered approaches have paved the way for the identification of several cyclic nucleotide signals, focusing on the advantages and challenges associated with deciphering the activation mechanisms of such enzymes.


Assuntos
Nucleotídeos Cíclicos , Nucleotídeos Cíclicos/metabolismo , Humanos , Animais , Transdução de Sinais , GMP Cíclico/metabolismo , AMP Cíclico/metabolismo
2.
Nat Commun ; 13(1): 5464, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115853

RESUMO

Schlafen 11 (SLFN11) is an interferon-inducible antiviral restriction factor with tRNA endoribonuclease and DNA binding functions. It is recruited to stalled replication forks in response to replication stress and inhibits replication of certain viruses such as the human immunodeficiency virus 1 (HIV-1) by modulating the tRNA pool. SLFN11 has been identified as a predictive biomarker in cancer, as its expression correlates with a beneficial response to DNA damage inducing anticancer drugs. However, the mechanism and interdependence of these two functions are largely unknown. Here, we present cryo-electron microscopy (cryo-EM) structures of human SLFN11 in its dimeric apoenzyme state, bound to tRNA and in complex with single-strand DNA. Full-length SLFN11 neither hydrolyses nor binds ATP and the helicase domain appears in an autoinhibited state. Together with biochemical and structure guided mutagenesis studies, our data give detailed insights into the mechanism of endoribonuclease activity as well as suggestions on how SLFN11 may block stressed replication forks.


Assuntos
Antineoplásicos , Antivirais , Microscopia Crioeletrônica , Endorribonucleases , Proteínas Nucleares , Trifosfato de Adenosina , Antineoplásicos/metabolismo , Antivirais/metabolismo , Apoenzimas , DNA , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Interferons , Proteínas Nucleares/metabolismo , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...