Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 13(10): 988-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25087069

RESUMO

Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.


Assuntos
Materiais Biocompatíveis/química , Ácido Hialurônico/química , Lubrificação/métodos , Animais , Fenômenos Biofísicos , Cartilagem Articular/fisiopatologia , Bovinos , Materiais Revestidos Biocompatíveis/química , Fricção , Humanos , Lubrificantes Oftálmicos/química , Masculino , Osteoartrite/fisiopatologia , Osteoartrite/terapia , Ligação Proteica , Coelhos , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
2.
J Toxicol Environ Health A ; 75(1): 25-35, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22047161

RESUMO

The aim of this study was to determine whether multiwalled carbon nanotubes (MWNCT) are taken up by and are toxic to human intestinal enterocytes using the Caco-2 cell model. Caco-2 cells were exposed to 50 µg/ml MWCNT (oxidized or pristine) for 24 h, and experiments were repeated in the presence of 2.5 mg/L natural organic matter. Cells displayed many of the properties that characterize enterocytes, such as apical microvilli, basolateral basement membrane, and glycogen. The cell monolayers also displayed tight junctions and electrical resistance. Exposure to pristine and oxidized MWCNT, with or without natural organic matter, did not markedly affect viability, which was assessed by measuring activity of released lactate dehydrogenase (LDH) and staining with propidium iodide. Ultrastructural analysis revealed some damage to microvilli colocalized with the MWCNT; however, neither type of MWCNT was taken up by Caco-2 cells. In contrast, pristine and oxidized MWCNT were taken up by the macrophage RAW 264.7 line. Our study suggests that intestinal enterocytes cells do not take up MWCNT.


Assuntos
Enterócitos/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Células CACO-2 , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Enterócitos/metabolismo , Enterócitos/ultraestrutura , Humanos , L-Lactato Desidrogenase/metabolismo , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Propídio/química , Junções Íntimas/efeitos dos fármacos , Fatores de Tempo
3.
Environ Sci Technol ; 44(21): 8121-7, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20939530

RESUMO

To construct accurate risk assessment models for engineered nanomaterials, there is urgent need for information on the reactivity (or conversely, persistence) and transformation pathways of these materials in the natural environment. As an important step toward addressing this issue, we have characterized the products formed when aqueous C(60) clusters (nC(60)) are exposed to natural sunlight and also have assessed the wavelengths primarily responsible for phototransformation. Long-wavelength light (λ ≥ 400 nm) isolated from sunlight, was shown to be important in both the phototransformation of nC(60) and in the production of (1)O(2). The significance of visible light in mediating the phototransformation of nC(60) was supported by additional experiments with monochromatic light in which the apparent quantum yield at 436 nm (Φ(436 nm) = (2.08 ± 0.08) × 10(-5)) was comparable to that at 366 nm (Φ(366 nm) = (2.02 ± 0.07) × 10(-5)). LDI-TOF mass spectrometry indicated that most of the photoproducts formed after 947 h of irradiation in natural sunlight retain a 60 atom carbon structure. A combination of (13)C NMR analysis of (13)C-enriched nC(60), X-ray photoelectron spectroscopy and FTIR indicated that photoproducts have olefinic carbon atoms as well as a variety of oxygen-containing functional groups, including vinyl ether and carbonyl or carboxyl groups, whose presence destroys the native π-electron system of C(60). Thus, the photoreactivity of nC(60) in sunlight leads to the formation of water-soluble C(60) derivatives.


Assuntos
Poluentes Ambientais/química , Fulerenos/química , Processos Fotoquímicos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oxigênio/química , Medição de Risco , Luz Solar
4.
Anal Bioanal Chem ; 396(3): 1003-14, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20052581

RESUMO

To utilize carbon nanotubes (CNTs) in various commercial and scientific applications, the graphene sheets that comprise CNT surfaces are often modified to tailor properties, such as dispersion. In this article, we provide a critical review of the techniques used to explore the chemical and structural characteristics of CNTs modified by covalent surface modification strategies that involve the direct incorporation of specific elements and inorganic or organic functional groups into the graphene sidewalls. Using examples from the literature, we discuss not only the popular techniques such as TEM, XPS, IR, and Raman spectroscopy but also more specialized techniques such as chemical derivatization, Boehm titrations, EELS, NEXAFS, TPD, and TGA. The chemical or structural information provided by each technique discussed, as well as their strengths and limitations. Particular emphasis is placed on XPS and the application of chemical derivatization in conjunction with XPS to quantify functional groups on CNT surfaces in situations where spectral deconvolution of XPS lineshapes is ambiguous.

5.
Langmuir ; 26(2): 967-81, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19894751

RESUMO

Exposure of multiwalled carbon nanotubes (MWCNTs) to oxidizing acids and other oxidants introduces oxygen-containing functional groups such as hydroxyl, carboxyl, and carbonyl groups onto the surface. This research evaluated how changes in oxygen concentration and distribution of oxygen-containing functional groups influenced the sorption of aqueous zinc and cadmium on MWCNTs. Sorption results with natural char, activated carbon, and a suite of MWCNTs (of varying surface oxygen content) were obtained. Results confirmed that surface oxygen enhances the sorption of both Zn[II] and Cd[II] from aqueous solution. Although Zn[II] sorbed more strongly than Cd[II] for all materials studied, surface oxidation had more effect on the sorption of Cd[II] than of Zn[II]. Additional sorption experiments with Zn[II] and 16 MWCNTs of varying surface oxidation level and functional group distribution revealed the relative contributions of different types of surface sites to sorption. Sorption isotherms were fit using a two-site Langmuir adsorption model that incorporated the independent characterization of functional group distribution. Results showed that carboxyl-carbon sites were over 20 times more energetic for zinc sorption than unoxidized carbon (graphenic-carbon) sites, though both site types are important contributors to sorption.

6.
Langmuir ; 25(17): 9767-76, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19583226

RESUMO

As with all nanomaterials, a large fraction of the atoms in carbon nanotubes (CNTs) reside at or near the surface. Consequently, surface chemistry will play a crucial role in determining the fate and transport of CNTs in aquatic environments. Frequently, oxygen-containing functional groups (surface oxides) are deliberately grafted into the CNT surface to promote colloidal stability. To study the influence that both the oxygen concentration and the oxygen functional-group distribution have on the colloidal stability of multiwalled carbon nanotubes (MWCNTs), a suite of oxidized MWCNTs (O-MWCNTs) were created using different oxidizing agents and reaction conditions. Stable colloidal suspensions were prepared by low-power sonication of O-MWCNT powders in Milli-Q water. Results from TEM, AFM, DLS, and XPS measurements revealed that, irrespective of the surface chemistry, the colloidal suspensions were composed of individual nanotubes with comparable length distributions. The critical coagulation concentrations (CCC) of O-MWCNTs that exhibited different surface chemistries were measured with time-resolved dynamic light scattering (TR-DLS) using NaCl as the electrolyte. Over a range of environmentally relevant pH values, linear correlations were found to exist between the CCC, total oxygen concentration, and surface charge of O-MWCNTs. In contrast to surface charge, electrophoretic mobility did not prove to be a useful metric of colloidal stability. Information obtained from chemical derivatization studies, carried out in conjunction with XPS, revealed that the distribution of oxygen-containing functional groups also influences the colloidal stability of O-MWCNTs, with carboxylic acid groups playing the most important role. This study highlights the fact that quantitative relationships can be developed to rationalize the influence of surface chemistry on the behavior of nanomaterials in aquatic environments.

7.
Environ Sci Technol ; 43(3): 819-25, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19245021

RESUMO

Grafting oxygen-containing functional groups onto carbon nanotubes (CNTs) by acid treatment improves their dispersion in aqueous solutions, but there is a lack of quantitative information on the colloidal properties of oxidized CNTs. We have studied the influence that pH and electrolytes have in determining the colloidal stability of oxidized multiwalled carbon nanotubes (O-MWCNTs), prepared by refluxing pristine MWCNTs in nitric acid. The acid-treated MWCNTs contained oxygen predominantly in the form of carboxyl groups. Colloidal suspensions of O-MWCNTs were prepared by low-power sonication and contained negatively charged, individual MWCNTs with an average length of approximately 650 nm. Time-resolved dynamic light scattering revealed that the aggregation rate of O-MWCNTs exhibited both reaction and mass-transport limited regimes in the presence of different electrolytes and as a function of pH. Particle stability profiles constructed from aggregation rate data allowed for the determination of critical coagulation concentrations (CCC), a metric of colloidal stability. The CCC values of O-MWCNTs varied with counterion concentration and valence in a manner consistentwith DLVO theory. Potentiometric measurements of surface charge correlated well with the observed pH-dependent variations in the O-MWCNT's colloidal stability. Electrophoretic mobility was also a diagnostic of particle stability, but only in neutral and acidic conditions.


Assuntos
Ácidos/química , Coloides , Nanotubos de Carbono , Luz , Espalhamento de Radiação , Propriedades de Superfície , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...