Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Brain Behav Immun ; 123: 99-107, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39260764

RESUMO

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder typically detected in childhood. Although ADHD has been demonstrated to have a strong genetic component, environmental risk factors, such as maternal infections during pregnancy, may also play a role. We therefore measured the immunological response to 5 abundant microorganisms (Toxoplasmosis Gondii, cytomegalovirus (CMV), Herpes Simplex Virus 1, Epstein Barr Virus and mycoplasma pneumoniae) in newborn heel prick samples of 1679 ADHD cases and 2948 matching controls as part of the iPSYCH Danish case-cohort study. We found an association between high anti-CMV (OR 1.30, 95 % CI [1.09,1.55], p = 0.015) and anti-mycoplasma (OR 1.30, 95 % CI [1.07,1.59], p = 0.037) signal and those newborns later being diagnosed with ADHD. The risk estimate remained increased when controlling for ADHD polygenic risk score as well as penicillin prescriptions. We saw a dose-response association with the amount of positive anti-microorganism titers increasing the risk of being diagnosed with ADHD later in life (p = 0.01 for the trend), suggesting that the more activated the immune system is prior to or at birth, the higher the risk is for a later diagnosis with ADHD. If the associations are causal, they emphasize the importance of a healthy life style during pregnancy to reduce the risk of infections when pregnant and the associated risks for the child.

2.
J Urol ; : 101097JU0000000000004187, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093873

RESUMO

PURPOSE: Childhood incontinence is stigmatized and underprioritized, and a basic understanding of its pathogenesis is missing. Our goal was to identify risk-conferring genetic variants in daytime urinary incontinence (DUI). MATERIALS AND METHODS: We conducted a genome-wide association study in the Danish iPSYCH2015 cohort. Cases (3024) were identified through DUI diagnosis codes and redeemed prescriptions for DUI medication in patients aged 5 to 20 years. Controls (30,240), selected from the same sample, were matched to cases on sex and psychiatric diagnoses, if any, and down-sampled to a 1:10 case:control ratio. Replication was performed in the Icelandic deCODE cohort (5475 cases/287,773 controls). Single-nucleotide polymorphism heritability was calculated using the genome-based restricted maximum likelihood method. Cross-trait genetic correlation was estimated using linkage disequilibrium score regression. Polygenic risk scores generated with LDpred2-auto and BOLT-LMM were assessed for association. RESULTS: Variants on chromosome 6 (rs12210989, odds ratio [OR] 1.24, 95% CI 1.17-1.32, P = 3.21 × 10-12) and 20 (rs4809801, OR 1.18, 95% CI 1.11-1.25, P = 3.66 × 10-8) reached genome-wide significance and implicated the PRDM13 and RIPOR3 genes. Chromosome 6 findings were replicated (P = .024, OR 1.09, 95% CI 1.01-1.16). Liability scale heritability ranged from 10.20% (95% CI 6.40%-14.00%) to 15.30% (95% CI 9.66%-20.94%). DUI and nocturnal enuresis showed positive genetic correlation (rg = 1.28 ± 0.38, P = .0007). DUI was associated with attention-deficit/hyperactivity disorder (OR 1.098, 95% CI 1.046-1.152, P < .0001) and BMI (OR 1.129, 95% CI 1.081-1.178, P < .0001) polygenic risk. CONCLUSIONS: Common genetic variants contribute to the risk of childhood DUI, and genes important in neuronal development and detrusor smooth muscle activity were implicated. These findings may help guide identification of new treatment targets.

3.
Nat Cardiovasc Res ; 3(6): 754-769, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39215135

RESUMO

Major depressive disorder (MDD) and cardiovascular disease (CVD) are often comorbid, resulting in excess morbidity and mortality. Here we show that CVDs share most of their genetic risk factors with MDD. Multivariate genome-wide association analysis of shared genetic liability between MDD and atherosclerotic CVD revealed seven loci and distinct patterns of tissue and brain cell-type enrichments, suggesting the involvement of the thalamus. Part of the genetic overlap was explained by shared inflammatory, metabolic and psychosocial or lifestyle risk factors. Our data indicated causal effects of genetic liability to MDD on CVD risk, but not from most CVDs to MDD, and showed that the causal effects were partly explained by metabolic and psychosocial or lifestyle factors. The distinct signature of MDD-atherosclerotic CVD comorbidity suggests an immunometabolic subtype of MDD that is more strongly associated with CVD than overall MDD. In summary, we identified biological mechanisms underlying MDD-CVD comorbidity and modifiable risk factors for prevention of CVD in individuals with MDD.


Assuntos
Doenças Cardiovasculares , Comorbidade , Transtorno Depressivo Maior , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Feminino , Humanos , Masculino , Doenças Cardiovasculares/epidemiologia , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Fatores de Risco de Doenças Cardíacas , Medição de Risco , Fatores de Risco
4.
Nat Commun ; 15(1): 5064, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871766

RESUMO

Mental disorders are leading causes of disability and premature death worldwide, partly due to high comorbidity with cardiometabolic disorders. Reasons for this comorbidity are still poorly understood. We leverage nation-wide health records and near-complete genealogies of Denmark and Sweden (n = 17 million) to reveal the genetic and environmental contributions underlying the observed comorbidity between six mental disorders and 15 cardiometabolic disorders. Genetic factors contributed about 50% to the comorbidity of schizophrenia, affective disorders, and autism spectrum disorder with cardiometabolic disorders, whereas the comorbidity of attention-deficit/hyperactivity disorder and anorexia with cardiometabolic disorders was mainly or fully driven by environmental factors. In this work we provide causal insight to guide clinical and scientific initiatives directed at achieving mechanistic understanding as well as preventing and alleviating the consequences of these disorders.


Assuntos
Doenças Cardiovasculares , Comorbidade , Transtornos Mentais , Humanos , Transtornos Mentais/genética , Transtornos Mentais/epidemiologia , Masculino , Dinamarca/epidemiologia , Suécia/epidemiologia , Feminino , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/epidemiologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/epidemiologia , Doenças Metabólicas/genética , Doenças Metabólicas/epidemiologia , Adulto , Interação Gene-Ambiente , Esquizofrenia/genética , Esquizofrenia/epidemiologia , Pessoa de Meia-Idade , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Populações Escandinavas e Nórdicas
5.
JAMA Psychiatry ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922630

RESUMO

Importance: Recurrent copy number variants (rCNVs) have been associated with increased risk of psychiatric disorders in case-control studies, but their population-level impact is unknown. Objective: To provide unbiased population-based estimates of prevalence and risk associated with psychiatric disorders for rCNVs and to compare risks across outcomes, rCNV dosage type (deletions or duplications), and locus features. Design, Setting, and Participants: This genetic association study is an analysis of data from the Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) case-cohort sample of individuals born in Denmark in 1981-2008 and followed up until 2015, including (1) all individuals (n = 92 531) with a hospital discharge diagnosis of attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder, major depressive disorder (MDD), or schizophrenia spectrum disorder (SSD) and (2) a subcohort (n = 50 625) randomly drawn from the source population. Data were analyzed from January 2021 to August 2023. Exposures: Carrier status of deletions and duplications at 27 autosomal rCNV loci was determined from neonatal blood samples genotyped on single-nucleotide variant microarrays. Main Outcomes and Measures: Population-based rCNV prevalence was estimated with a survey model using finite population correction to account for oversampling of cases. Hazard ratio (HR) estimates and 95% CIs for psychiatric disorders were derived using weighted Cox proportional hazard models. Risks were compared across outcomes, dosage type, and locus features using generalized estimating equation models. Results: A total of 3547 rCNVs were identified in 64 735 individuals assigned male at birth (53.8%) and 55 512 individuals assigned female at birth (46.2%) whose age at the end of follow-up ranged from 7.0 to 34.7 years (mean, 21.8 years). Most observed increases in rCNV-associated risk for ADHD, ASD, or SSD were moderate, and risk estimates were highly correlated across these disorders. Notable exceptions included high ASD-associated risk observed for Prader-Willi/Angelman syndrome duplications (HR, 20.8; 95% CI, 7.9-55). No rCNV was associated with increased MDD risk. Also, rCNV-associated risk was positively correlated with locus size and gene constraint but not with dosage type. Comparison with published case-control and community-based studies revealed a higher prevalence of deletions and lower associated increase in risk for several rCNVs in iPSYCH2015. Conclusions and Relevance: This study found that several rCNVs were more prevalent and conferred less risk of psychiatric disorders than estimated previously. Most case-control studies overestimate rCNV-associated risk of psychiatric disorders, likely because of selection bias. In an era where genetics is increasingly being clinically applied, these results highlight the importance of population-based risk estimates for genetics-based predictions.

6.
Nat Cardiovasc Res ; 3(6): 754-769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38898929

RESUMO

Major depressive disorder (MDD) and cardiovascular disease (CVD) are often comorbid, resulting in excess morbidity and mortality. Here we show that CVDs share most of their genetic risk factors with MDD. Multivariate genome-wide association analysis of shared genetic liability between MDD and atherosclerotic CVD revealed seven loci and distinct patterns of tissue and brain cell-type enrichments, suggesting the involvement of the thalamus. Part of the genetic overlap was explained by shared inflammatory, metabolic and psychosocial or lifestyle risk factors. Our data indicated causal effects of genetic liability to MDD on CVD risk, but not from most CVDs to MDD, and showed that the causal effects were partly explained by metabolic and psychosocial or lifestyle factors. The distinct signature of MDD-atherosclerotic CVD comorbidity suggests an immunometabolic subtype of MDD that is more strongly associated with CVD than overall MDD. In summary, we identified biological mechanisms underlying MDD-CVD comorbidity and modifiable risk factors for prevention of CVD in individuals with MDD.

7.
medRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464139

RESUMO

Mental disorders (MDs) are leading causes of disability and premature death worldwide, partly due to high comorbidity with cardiometabolic disorders (CMDs). Reasons for this comorbidity are still poorly understood. We leverage nation-wide health records and complete genealogies of Denmark and Sweden (n=17 million) to reveal the genetic and environmental contributions underlying the observed comorbidity between six MDs and 14 CMDs. Genetic factors contributed about 50% to the comorbidity of schizophrenia, affective disorders, and autism spectrum disorder with CMDs, whereas the comorbidity of attention-deficit/hyperactivity disorder and anorexia with CMDs was mainly or fully driven by environmental factors. These findings provide causal insight to guide clinical and scientific initiatives directed at achieving mechanistic understanding as well as preventing and alleviating the consequences of these disorders.

8.
medRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496634

RESUMO

To date, four genome-wide association studies (GWAS) of obsessive-compulsive disorder (OCD) have been published, reporting a high single-nucleotide polymorphism (SNP)-heritability of 28% but finding only one significant SNP. A substantial increase in sample size will likely lead to further identification of SNPs, genes, and biological pathways mediating the susceptibility to OCD. We conducted a GWAS meta-analysis with a 2-3-fold increase in case sample size (OCD cases: N = 37,015, controls: N = 948,616) compared to the last OCD GWAS, including six previously published cohorts (OCGAS, IOCDF-GC, IOCDF-GC-trio, NORDiC-nor, NORDiC-swe, and iPSYCH) and unpublished self-report data from 23andMe Inc. We explored the genetic architecture of OCD by conducting gene-based tests, tissue and celltype enrichment analyses, and estimating heritability and genetic correlations with 74 phenotypes. To examine a potential heterogeneity in our data, we conducted multivariable GWASs with MTAG. We found support for 15 independent genome-wide significant loci (14 new) and 79 protein-coding genes. Tissue enrichment analyses implicate multiple cortical regions, the amygdala, and hypothalamus, while cell type analyses yielded 12 cell types linked to OCD (all neurons). The SNP-based heritability of OCD was estimated to be 0.08. Using MTAG we found evidence for specific genetic underpinnings characteristic of different cohort-ascertainment and identified additional significant SNPs. OCD was genetically correlated with 40 disorders or traits-positively with all psychiatric disorders and negatively with BMI, age at first birth and multiple autoimmune diseases. The GWAS meta-analysis identified several biologically informative genes as important contributors to the aetiology of OCD. Overall, we have begun laying the groundwork through which the biology of OCD will be understood and described.

9.
medRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38410442

RESUMO

Background: Accurate diagnosis of bipolar disorder (BD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A key reason is that the first manic episode is often preceded by a depressive one, making it difficult to distinguish BD from unipolar major depressive disorder (MDD). Aims: Here, we use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores that may aid early differential diagnosis. Methods: Based on individual genotypes from case-control cohorts of BD and MDD shared through the Psychiatric Genomics Consortium, we compile case-case-control cohorts, applying a careful merging and quality control procedure. In a resulting cohort of 51,149 individuals (15,532 BD cases, 12,920 MDD cases and 22,697 controls), we perform a variety of GWAS and polygenic risk scores (PRS) analyses. Results: While our GWAS is not well-powered to identify genome-wide significant loci, we find significant SNP-heritability and demonstrate the ability of the resulting PRS to distinguish BD from MDD, including BD cases with depressive onset. We replicate our PRS findings, but not signals of individual loci in an independent Danish cohort (iPSYCH 2015 case-cohort study, N=25,966). We observe strong genetic correlation between our case-case GWAS and that of case-control BD. Conclusions: We find that MDD and BD, including BD with a depressive onset, are genetically distinct. Further, our findings support the hypothesis that Controls - MDD - BD primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BD and, importantly, BD with depressive onset from MDD.

11.
Biol Psychiatry ; 96(7): 543-551, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185234

RESUMO

Precision medicine has the ambition to improve treatment response and clinical outcomes through patient stratification and holds great potential for the treatment of mental disorders. However, several important factors are needed to transform current practice into a precision psychiatry framework. Most important are 1) the generation of accessible large real-world training and test data including genomic data integrated from multiple sources, 2) the development and validation of advanced analytical tools for stratification and prediction, and 3) the development of clinically useful management platforms for patient monitoring that can be integrated into health care systems in real-life settings. This narrative review summarizes strategies for obtaining the key elements-well-powered samples from large biobanks integrated with electronic health records and health registry data using novel artificial intelligence algorithms-to predict outcomes in severe mental disorders and translate these models into clinical management and treatment approaches. Key elements are massive mental health data and novel artificial intelligence algorithms. For the clinical translation of these strategies, we discuss a precision medicine platform for improved management of mental disorders. We use cases to illustrate how precision medicine interventions could be brought into psychiatry to improve the clinical outcomes of mental disorders.


Assuntos
Transtornos Mentais , Medicina de Precisão , Psiquiatria , Humanos , Medicina de Precisão/métodos , Transtornos Mentais/terapia , Transtornos Mentais/genética , Psiquiatria/métodos , Registros Eletrônicos de Saúde , Inteligência Artificial , Algoritmos
12.
Nature ; 625(7994): 312-320, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200293

RESUMO

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Assuntos
Asiático , População Europeia , Genoma Humano , Seleção Genética , Humanos , Afeto , Agricultura/história , Alelos , Doença de Alzheimer/genética , Ásia/etnologia , Asiático/genética , Diabetes Mellitus/genética , Europa (Continente)/etnologia , População Europeia/genética , Fazendeiros/história , Loci Gênicos/genética , Predisposição Genética para Doença , Genoma Humano/genética , História Antiga , Migração Humana , Caça/história , Família Multigênica/genética , Fenótipo , Biobanco do Reino Unido , Herança Multifatorial/genética
13.
medRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693619

RESUMO

Major depressive disorder (MDD) and cardiovascular disease (CVD) are often comorbid, resulting in excess morbidity and mortality. Using genomic data, this study elucidates biological mechanisms, key risk factors, and causal pathways underlying their comorbidity. We show that CVDs share a large proportion of their genetic risk factors with MDD. Multivariate genome-wide association analysis of the shared genetic liability between MDD and atherosclerotic CVD (ASCVD) revealed seven novel loci and distinct patterns of tissue and brain cell-type enrichments, suggesting a role for the thalamus. Part of the genetic overlap was explained by shared inflammatory, metabolic, and psychosocial/lifestyle risk factors. Finally, we found support for causal effects of genetic liability to MDD on CVD risk, but not from most CVDs to MDD, and demonstrated that the causal effects were partly explained by metabolic and psychosocial/lifestyle factors. The distinct signature of MDD-ASCVD comorbidity aligns with the idea of an immunometabolic sub-type of MDD more strongly associated with CVD than overall MDD. In summary, we identify plausible biological mechanisms underlying MDD-CVD comorbidity, as well as key modifiable risk factors for prevention of CVD in individuals with MDD.

14.
Nat Genet ; 56(2): 234-244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036780

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a complex disorder that manifests variability in long-term outcomes and clinical presentations. The genetic contributions to such heterogeneity are not well understood. Here we show several genetic links to clinical heterogeneity in ADHD in a case-only study of 14,084 diagnosed individuals. First, we identify one genome-wide significant locus by comparing cases with ADHD and autism spectrum disorder (ASD) to cases with ADHD but not ASD. Second, we show that cases with ASD and ADHD, substance use disorder and ADHD, or first diagnosed with ADHD in adulthood have unique polygenic score (PGS) profiles that distinguish them from complementary case subgroups and controls. Finally, a PGS for an ASD diagnosis in ADHD cases predicted cognitive performance in an independent developmental cohort. Our approach uncovered evidence of genetic heterogeneity in ADHD, helping us to understand its etiology and providing a model for studies of other disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Herança Multifatorial/genética
15.
Biol Psychiatry ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38056704

RESUMO

BACKGROUND: Symptoms of major depressive disorder (MDD) are commonly assessed using self-rating instruments like the Patient Health Questionnaire-9 (PHQ-9) (current symptoms) and the Composite International Diagnostic Interview Short-Form (CIDI-SF) (worst-episode symptoms). We performed a systematic comparison between them for their genetic architecture and utility in investigating MDD heterogeneity. METHODS: Using data from the UK Biobank (n = 41,948-109,417), we assessed the single nucleotide polymorphism heritability and genetic correlation (rg) of both sets of MDD symptoms. We further compared their rg with non-MDD traits and used Mendelian randomization to assess whether either set of symptoms has more genetic sharing with non-MDD traits. We also assessed how specific each set of symptoms is to MDD using the metric polygenic risk score pleiotropy. Finally, we used genomic structural equation modeling to identify factors that explain the genetic covariance between each set of symptoms. RESULTS: Corresponding symptoms reported through the PHQ-9 and CIDI-SF have low to moderate genetic correlations (rg = 0.43-0.87), and this cannot be fully attributed to different severity thresholds or the use of a skip structure in the CIDI-SF. Both Mendelian randomization and polygenic risk score pleiotropy analyses showed that PHQ-9 symptoms are more associated with traits that reflect general dysphoria, whereas the skip structure in the CIDI-SF allows for the identification of heterogeneity among likely MDD cases. Finally, the 2 sets of symptoms showed different factor structures in genomic structural equation modeling, reflective of their genetic differences. CONCLUSIONS: MDD symptoms assessed using the PHQ-9 and CIDI-SF are not interchangeable; the former better indexes general dysphoria, while the latter is more informative about within-MDD heterogeneity.

16.
Lancet Reg Health Eur ; 35: 100756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38115966

RESUMO

Background: Although the persistence of physical symptoms after SARS-CoV-2 infection is a major public health concern, evidence from large observational studies beyond one year post diagnosis remain scarce. We aimed to assess the prevalence of physical symptoms in relation to acute illness severity up to more than 2-years after diagnosis of COVID-19. Methods: This multinational study included 64,880 adult participants from Iceland, Sweden, Denmark, and Norway with self-reported data on COVID-19 and physical symptoms from April 2020 to August 2022. We compared the prevalence of 15 physical symptoms, measured by the Patient Health Questionnaire (PHQ-15), among individuals with or without a confirmed COVID-19 diagnosis, by acute illness severity, and by time since diagnosis. We additionally assessed the change in symptoms in a subset of Swedish adults with repeated measures, before and after COVID-19 diagnosis. Findings: During up to 27 months of follow-up, 34.5% participants (22,382/64,880) were diagnosed with COVID-19. Individuals who were diagnosed with COVID-19, compared to those not diagnosed, had an overall 37% higher prevalence of severe physical symptom burden (PHQ-15 score ≥15, adjusted prevalence ratio [PR] 1.37 [95% confidence interval [CI] 1.23-1.52]). The prevalence was associated with acute COVID-19 severity: individuals bedridden for seven days or longer presented with the highest prevalence (PR 2.25 [1.85-2.74]), while individuals never bedridden presented with similar prevalence as individuals not diagnosed with COVID-19 (PR 0.92 [0.68-1.24]). The prevalence was statistically significantly elevated among individuals diagnosed with COVID-19 for eight of the fifteen measured symptoms: shortness of breath, chest pain, dizziness, heart racing, headaches, low energy/fatigue, trouble sleeping, and back pain. The analysis of repeated measurements rendered similar results as the main analysis. Interpretation: These data suggest an elevated prevalence of some, but not all, physical symptoms during up to more than 2 years after diagnosis of COVID-19, particularly among individuals suffering a severe acute illness, highlighting the importance of continued monitoring and alleviation of these targeted core symptoms. Funding: This work was mainly supported by grants from NordForsk (COVIDMENT, grant number 105668 and 138929) and Horizon 2020 (CoMorMent, 847776). See Acknowledgements for further details on funding.

17.
Transl Psychiatry ; 13(1): 391, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097559

RESUMO

Large deletions at chromosome 22q11.2 are known to cause severe clinical conditions collectively known as 22q11.2 deletion syndrome. Notwithstanding the pathogenicity of these deletions, affected individuals are typically diagnosed in late childhood or early adolescence, and little is known of the molecular signaling cascades and biological consequences immediately downstream of the deleted genes. Here, we used targeted metabolomics to compare neonatal dried blood spot samples from 203 individuals clinically identified as carriers of a deletion at chromosome 22q11.2 with 203 unaffected individuals. A total of 173 metabolites were successfully identified and used to inform on systemic dysregulation caused by the genomic lesion and to discriminate carriers from non-carriers. We found 84 metabolites to be differentially abundant between carriers and non-carriers of the 22q11.2 deletion. A predictive model based on all 173 metabolites achieved high Accuracy (89%), Area Under the Curve (93%), F1 (88%), Positive Predictive Value (94%), and Negative Predictive Value (84%) with tyrosine and proline having the highest individual contributions to the model as well as the highest interaction strength. Targeted metabolomics provides insight into the molecular consequences possibly contributing to the pathology underlying the clinical manifestations of the 22q11 deletion and is an easily applicable approach to first-pass screening for carrier status of the 22q11 to prompt subsequent verification of the genomic diagnosis.


Assuntos
Síndrome de DiGeorge , Adolescente , Recém-Nascido , Humanos , Criança , Síndrome de DiGeorge/genética , Cromossomos Humanos Par 22 , Deleção Cromossômica
18.
Cell Genom ; 3(12): 100457, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116117

RESUMO

Complement components have been linked to schizophrenia and autoimmune disorders. We examined the association between neonatal circulating C3 and C4 protein concentrations in 68,768 neonates and the risk of six mental disorders. We completed genome-wide association studies (GWASs) for C3 and C4 and applied the summary statistics in Mendelian randomization and phenome-wide association studies related to mental and autoimmune disorders. The GWASs for C3 and C4 protein concentrations identified 15 and 36 independent loci, respectively. We found no associations between neonatal C3 and C4 concentrations and mental disorders in the total sample (both sexes combined); however, post-hoc analyses found that a higher C3 concentration was associated with a reduced risk of schizophrenia in females. Mendelian randomization based on C4 summary statistics found an altered risk of five types of autoimmune disorders. Our study adds to our understanding of the associations between C3 and C4 concentrations and subsequent mental and autoimmune disorders.

19.
Nat Genet ; 55(12): 2082-2093, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985818

RESUMO

Biobanks often contain several phenotypes relevant to diseases such as major depressive disorder (MDD), with partly distinct genetic architectures. Researchers face complex tradeoffs between shallow (large sample size, low specificity/sensitivity) and deep (small sample size, high specificity/sensitivity) phenotypes, and the optimal choices are often unclear. Here we propose to integrate these phenotypes to combine the benefits of each. We use phenotype imputation to integrate information across hundreds of MDD-relevant phenotypes, which significantly increases genome-wide association study (GWAS) power and polygenic risk score (PRS) prediction accuracy of the deepest available MDD phenotype in UK Biobank, LifetimeMDD. We demonstrate that imputation preserves specificity in its genetic architecture using a novel PRS-based pleiotropy metric. We further find that integration via summary statistics also enhances GWAS power and PRS predictions, but can introduce nonspecific genetic effects depending on input. Our work provides a simple and scalable approach to improve genetic studies in large biobanks by integrating shallow and deep phenotypes.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Bancos de Espécimes Biológicos , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
20.
Transl Psychiatry ; 13(1): 346, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953300

RESUMO

It remains inconclusive whether postpartum depression (PPD) and depression with onset outside the postpartum period (MDD) are genetically distinct disorders. We aimed to investigate whether polygenic risk scores (PGSs) for major mental disorders differ between PPD cases and MDD cases in a nested case-control study of 50,057 women born from 1981 to 1997 in the iPSYCH2015 sample in Demark. We identified 333 women with first-onset postpartum depression (PPD group), who were matched with 993 women with first-onset depression diagnosed outside of postpartum (MDD group), and 999 female population controls. Data on genetics and depressive disorders were retrieved from neonatal biobanks and the Psychiatric Central Research Register. PGSs were calculated from both individual-level genetic data and meta-analysis summary statistics from the Psychiatric Genomics Consortium. Conditional logistic regression was used to calculate the odds ratio (OR), accounting for the selection-related reproductive behavior. After adjustment for covariates, higher PGSs for severe mental disorders were associated with increased ORs of both PPD and MDD. Compared with MDD cases, MDD PGS and attention-deficit/hyperactivity disorder PGS were marginally but not statistically higher for PPD cases, with the OR of PPD versus MDD being 1.12 (95% CI: 0 .97-1.29) and 1.11 (0.97-1.27) per-standard deviation increase, respectively. The ORs of PPD versus MDD did not statistically differ by PGSs of bipolar disorder, schizophrenia, or autism spectrum disorder. Our findings suggest that relying on PGS data, there was no clear evidence of distinct genetic make-up of women with depression occurring during or outside postpartum, after taking the selection-related reproductive behavior into account.


Assuntos
Transtorno do Espectro Autista , Depressão Pós-Parto , Transtorno Depressivo Maior , Recém-Nascido , Humanos , Feminino , Depressão Pós-Parto/epidemiologia , Depressão Pós-Parto/genética , Estudos de Casos e Controles , Transtorno Depressivo Maior/diagnóstico , Período Pós-Parto/psicologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA