Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(5): 3204-3210, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36716203

RESUMO

We demonstrate an automated microfluidic nuclear magnetic resonance (NMR) system that quantitatively characterizes protein-ligand interactions without user intervention and with minimal sample needs through protein-detected heteronuclear 2D NMR spectroscopy. Quantitation of protein-ligand interactions is of fundamental importance to the understanding of signaling and other life processes. As is well-known, NMR provides rich information both on the thermodynamics of binding and on the binding site. However, the required titrations are laborious and tend to require large amounts of sample, which are not always available. The present work shows how the analytical power of NMR detection can be brought in line with the trend of miniaturization and automation in life science workflows.


Assuntos
Microfluídica , Proteínas , Ligantes , Proteínas/química , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos
2.
Lab Chip ; 21(8): 1598-1603, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33662071

RESUMO

We present a microfluidic platform that allows in operando nuclear magnetic resonance (NMR) observation of serial mixing experiments. Gradually adding one reagent to another is a fundamental experimental modality, widely used to quantify equilibrium constants, for titrations, and in chemical kinetics studies. NMR provides a non-invasive means to quantify concentrations and to follow structural changes at the molecular level as a function of exchanged volume. Using active pneumatic valving on the microfluidic device directly inside an NMR spectrometer equipped with a transmission-line NMR microprobe, the system allows injection of aliquots and in situ mixing in a sample volume of less than 10 µL.

3.
J Biol Chem ; 295(36): 12755-12771, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32719005

RESUMO

Collagen VI is a ubiquitous heterotrimeric protein of the extracellular matrix (ECM) that plays an essential role in the proper maintenance of skeletal muscle. Mutations in collagen VI lead to a spectrum of congenital myopathies, from the mild Bethlem myopathy to the severe Ullrich congenital muscular dystrophy. Collagen VI contains only a short triple helix and consists primarily of von Willebrand factor type A (VWA) domains, protein-protein interaction modules found in a range of ECM proteins. Disease-causing mutations occur commonly in the VWA domains, and the second VWA domain of the α3 chain, the N2 domain, harbors several such mutations. Here, we investigate structure-function relationships of the N2 mutations to shed light on their possible myopathy mechanisms. We determined the X-ray crystal structure of N2, combined with monitoring secretion efficiency in cell culture of selected N2 single-domain mutants, finding that mutations located within the central core of the domain severely affect secretion efficiency. In longer α3 chain constructs, spanning N6-N3, small-angle X-ray scattering demonstrates that the tandem VWA array has a modular architecture and samples multiple conformations in solution. Single-particle EM confirmed the presence of multiple conformations. Structural adaptability appears intrinsic to the VWA domain region of collagen VI α3 and has implications for binding interactions and modulating stiffness within the ECM.


Assuntos
Colágeno Tipo VI/química , Doenças Musculares , Mutação , Colágeno Tipo VI/genética , Cristalografia por Raios X , Humanos , Domínios Proteicos
4.
J Biol Chem ; 293(20): 7538-7548, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29599287

RESUMO

Endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 process N-terminally extended antigenic precursors for optimal loading onto major histocompatibility complex class I (MHC I) molecules. We and others have demonstrated that ERAP1 processes peptides bound to MHC I, but the underlying mechanism is unknown. To this end, we utilized single-chain trimers (SCT) of the ovalbumin-derived epitope SIINFEKL (SL8) tethered to the H2-Kb MHC I determinant from mouse and introduced three substitutions, E63A, K66A, and W167A, at the A-pocket of the peptide-binding groove in the MHC I heavy chain, which interact with the N termini of peptides. These variants significantly decreased SL8-presenting SCT at the cell surface in the presence of ERAP1, but did not affect overall SCT expression, indicating that ERAP1 trims the SL8 N terminus. Comparison of the X-ray crystal structures of WT and three variant SCTs revealed only minor perturbations of the peptide-binding domain in the variants. However, molecular dynamics simulations suggested that SL8 can dissociate partially within a sub-microsecond timescale, exposing its N terminus to the solvent. We also found that the C terminus of MHC I-bound SL8 remains deeply buried in the F-pocket of MHC I. Furthermore, free-energy calculations revealed that the three SCT variants exhibit lower free-energy barriers of N terminus dissociation than the WT Kb Taken together, our results are consistent with a previously observed model in which the partial dissociation of bound peptides from MHC I exposes their N terminus to trimming by ERAP1, whereas their C terminus is anchored at the F-pocket.


Assuntos
Aminopeptidases/metabolismo , Epitopos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Aminopeptidases/química , Apresentação de Antígeno , Cristalografia por Raios X , Epitopos/química , Células HeLa , Antígenos de Histocompatibilidade Classe I/química , Humanos , Antígenos de Histocompatibilidade Menor/química , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
5.
J Biol Chem ; 292(49): 20255-20269, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29021251

RESUMO

Major histocompatibility complex class I molecules (MHC I) help protect jawed vertebrates by binding and presenting immunogenic peptides to cytotoxic T lymphocytes. Peptides are selected from a large diversity present in the endoplasmic reticulum. However, only a limited number of peptides complement the polymorphic MHC specificity determining pockets in a way that leads to high-affinity peptide binding and efficient antigen presentation. MHC I molecules possess an intrinsic ability to discriminate between peptides, which varies in efficiency between allotypes, but the mechanism of selection is unknown. Elucidation of the selection mechanism is likely to benefit future immune-modulatory therapies. Evidence suggests peptide selection involves transient adoption of alternative, presumably higher energy conformations than native peptide-MHC complexes. However, the instability of peptide-receptive MHC molecules has hindered characterization of such conformational plasticity. To investigate the dynamic nature of MHC, we refolded MHC proteins with peptides that can be hydrolyzed by UV light and thus released. We compared the resultant peptide-receptive MHC molecules with non-hydrolyzed peptide-loaded MHC complexes by monitoring the exchange of hydrogen for deuterium in solution. We found differences in hydrogen-deuterium exchange between peptide-loaded and peptide-receptive molecules that were negated by the addition of peptide to peptide-receptive MHC molecules. Peptide hydrolysis caused significant increases in hydrogen-deuterium exchange in sub-regions of the peptide-binding domain and smaller increases elsewhere, including in the α3 domain and the non-covalently associated ß2-microglobulin molecule, demonstrating long-range dynamic communication. Comparing two MHC allotypes revealed allotype-specific differences in hydrogen-deuterium exchange, consistent with the notion that MHC I plasticity underpins peptide selection.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/química , Peptídeos/metabolismo , Dobramento de Proteína , Animais , Sítios de Ligação , Galinhas , Medição da Troca de Deutério , Antígenos de Histocompatibilidade Classe I/metabolismo , Ligação Proteica , Conformação Proteica , Raios Ultravioleta
6.
Nat Commun ; 7: 12194, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27432510

RESUMO

Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind the sigma factor σ(R) preventing its association with RNA polymerase, and that zinc plays a central role in maintaining this high-affinity complex. Oxidation of RsrA is limited by the rate of zinc release, which weakens the RsrA-σ(R) complex by accelerating its dissociation. The subsequent trigger disulfide, formed between specific combinations of RsrA's three zinc-binding cysteines, precipitates structural collapse to a compact state where all σ(R)-binding residues are sequestered back into its hydrophobic core, releasing σ(R) to activate transcription of anti-oxidant genes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Estresse Oxidativo , Fator sigma/antagonistas & inibidores , Sequência de Aminoácidos , Cisteína/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Oxirredução , Zinco/metabolismo
7.
Sci Rep ; 5: 14928, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482009

RESUMO

The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismo , Alelos , Sítios de Ligação , Antígeno HLA-B44/química , Antígeno HLA-B44/genética , Antígeno HLA-B44/imunologia , Antígeno HLA-B44/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Conformação Proteica
8.
Mol Immunol ; 68(2 Pt A): 98-101, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25818313

RESUMO

Major histocompatibility complex class I (MHC I) proteins provide protection from intracellular pathogens and cancer via each of a cell's MHC I molecules binding and presenting a peptide to cytotoxic T lymphocytes. MHC I genes are highly polymorphic and can have significant diversity, with polymorphisms predominantly localised in the peptide-binding groove where they can change peptide-binding specificity. However, polymorphic residues may also determine other functional properties, such as how dependent MHC I alleles are on the peptide-loading complex for optimal acquisition of peptide cargo. We describe how differences in the peptide-binding properties of two MHC I alleles correlates with altered conformational flexibility in the peptide-empty state. We hypothesise that plasticity is an intrinsic property encoded by the protein sequence, and that co-ordinated movements of the membrane-proximal and membrane-distal domains collectively determines how dependent MHC I are on the peptide-loading complex for efficient assembly with high affinity peptides.


Assuntos
Apresentação de Antígeno/genética , Células Apresentadoras de Antígenos/imunologia , Antígenos de Histocompatibilidade Classe I/química , Peptídeos/química , Alelos , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Simulação de Dinâmica Molecular , Peptídeos/imunologia , Peptídeos/metabolismo , Polimorfismo Genético , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia
9.
Mol Cell Biol ; 35(10): 1805-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25776553

RESUMO

Acidification of the extracellular and/or intracellular environment is involved in many aspects of cell physiology and pathology. Eukaryotic elongation factor 2 kinase (eEF2K) is a Ca(2+)/calmodulin-dependent kinase that regulates translation elongation by phosphorylating and inhibiting eEF2. Here we show that extracellular acidosis elicits activation of eEF2K in vivo, leading to enhanced phosphorylation of eEF2. We identify five histidine residues in eEF2K that are crucial for the activation of eEF2K during acidosis. Three of them (H80, H87, and H94) are in its calmodulin-binding site, and their protonation appears to enhance the ability of calmodulin to activate eEF2K. The other two histidines (H227 and H230) lie in the catalytic domain of eEF2K. We also identify His108 in calmodulin as essential for activation of eEF2K. Acidification of cancer cell microenvironments is a hallmark of malignant solid tumors. Knocking down eEF2K in cancer cells attenuated the decrease in global protein synthesis when cells were cultured at acidic pH. Importantly, activation of eEF2K is linked to cancer cell survival under acidic conditions. Inhibition of eEF2K promotes cancer cell death under acidosis.


Assuntos
Sobrevivência Celular , Quinase do Fator 2 de Elongação/metabolismo , Histidina/metabolismo , Neoplasias/metabolismo , Animais , Calmodulina/metabolismo , Domínio Catalítico , Linhagem Celular , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias/patologia
10.
Mol Cell Biol ; 35(10): 1788-804, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25755286

RESUMO

Protein synthesis, especially translation elongation, requires large amounts of energy, which is often generated by oxidative metabolism. Elongation is controlled by phosphorylation of eukaryotic elongation factor 2 (eEF2), which inhibits its activity and is catalyzed by eEF2 kinase (eEF2K), a calcium/calmodulin-dependent α-kinase. Hypoxia causes the activation of eEF2K and induces eEF2 phosphorylation independently of previously known inputs into eEF2K. Here, we show that eEF2K is subject to hydroxylation on proline-98. Proline hydroxylation is catalyzed by proline hydroxylases, oxygen-dependent enzymes which are inactivated during hypoxia. Pharmacological inhibition of proline hydroxylases also stimulates eEF2 phosphorylation. Pro98 lies in a universally conserved linker between the calmodulin-binding and catalytic domains of eEF2K. Its hydroxylation partially impairs the binding of calmodulin to eEF2K and markedly limits the calmodulin-stimulated activity of eEF2K. Neuronal cells depend on oxygen, and eEF2K helps to protect them from hypoxia. eEF2K is the first example of a protein directly involved in a major energy-consuming process to be regulated by proline hydroxylation. Since eEF2K is cytoprotective during hypoxia and other conditions of nutrient insufficiency, it may be a valuable target for therapy of poorly vascularized solid tumors.


Assuntos
Hipóxia Celular , Quinase do Fator 2 de Elongação/metabolismo , Neurônios/enzimologia , Prolina/metabolismo , Animais , Calmodulina/metabolismo , Domínio Catalítico , Células Cultivadas , Quinase do Fator 2 de Elongação/química , Ativação Enzimática , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Hidroxilação , Camundongos , Fator 2 de Elongação de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Prolil Hidroxilases/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia
11.
Org Biomol Chem ; 13(15): 4562-9, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25777583

RESUMO

We describe the development of a small-molecule mimic of Xaa-trans-Pro dipeptide in poly-l-proline type II helix conformation, based upon a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane core structure. Stereoselective synthesis of the mimic from l-pyroglutamic acid is achieved in twelve linear steps and 9.9% yield. Configurational and conformational analyses are conducted using a combination of (1)H NMR spectroscopy, X-ray crystallography and circular dichroism spectroscopy; and evaluation of the mimic as a promising surrogate dipeptide, in a protein-protein interaction between the SH3 domain of human Fyn kinase (Fyn SH3) and peptidomimetics of its biological ligand, are conducted by (1)H-(15)N HSQC NMR titration experiments.


Assuntos
Compostos Azabicíclicos/síntese química , Dipeptídeos/química , Peptídeos/química , Peptidomiméticos/síntese química , Sequência de Aminoácidos , Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacologia , Cristalografia por Raios X , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Domínios de Homologia de src
12.
Protein Expr Purif ; 107: 20-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25462806

RESUMO

VWA domains are the predominant independent folding units within matrilins and mediate protein-protein interactions. Mutations in the matrilin-3 VWA domain cause various skeletal diseases. The analysis of the pathological mechanisms is hampered by the lack of detailed structural information on matrilin VWA domains. Attempts to resolve their structures were hindered by low solubility and a tendency to aggregation. We therefore took a comprehensive approach to improve the recombinant expression of functional matrilin VWA domains to enable X-ray crystallography and nuclear magnetic resonance (NMR) studies. The focus was on expression in Escherichia coli, as this allows incorporation of isotope-labeled amino acids, and on finding conditions that enhance solubility. Indeed, circular dichroism (CD) and NMR measurements indicated a proper folding of the bacterially expressed domains and, interestingly, expression of zebrafish matrilin VWA domains and addition of N-ethylmaleimide yielded the most stable proteins. However, such proteins did still not crystallize and allowed only partial peak assignment in NMR. Moreover, bacterially expressed matrilin VWA domains differ in their solubility and functional properties from the same domains expressed in eukaryotic cells. Structural studies of matrilin VWA domains will depend on the use of eukaryotic expression systems.


Assuntos
Proteínas Matrilinas/química , Proteínas Matrilinas/genética , Animais , Dicroísmo Circular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Matrilinas/isolamento & purificação , Proteínas Matrilinas/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Peixe-Zebra
13.
PLoS One ; 9(2): e89657, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586943

RESUMO

Major histocompatibility complex class I molecules (MHC I) present peptides to cytotoxic T-cells at the surface of almost all nucleated cells. The function of MHC I molecules is to select high affinity peptides from a large intracellular pool and they are assisted in this process by co-factor molecules, notably tapasin. In contrast to mammals, MHC homozygous chickens express a single MHC I gene locus, termed BF2, which is hypothesised to have co-evolved with the highly polymorphic tapasin within stable haplotypes. The BF2 molecules of the B15 and B19 haplotypes have recently been shown to differ in their interactions with tapasin and in their peptide selection properties. This study investigated whether these observations might be explained by differences in the protein plasticity that is encoded into the MHC I structure by primary sequence polymorphisms. Furthermore, we aimed to demonstrate the utility of a complimentary modelling approach to the understanding of complex experimental data. Combining mechanistic molecular dynamics simulations and the primary sequence based technique of statistical coupling analysis, we show how two of the eight polymorphisms between BF2*15∶01 and BF2*19∶01 facilitate differences in plasticity. We show that BF2*15∶01 is intrinsically more plastic than BF2*19∶01, exploring more conformations in the absence of peptide. We identify a protein sector of contiguous residues connecting the membrane bound α3 domain and the heavy chain peptide binding site. This sector contains two of the eight polymorphic residues. One is residue 22 in the peptide binding domain and the other 220 is in the α3 domain, a putative tapasin binding site. These observations are in correspondence with the experimentally observed functional differences of these molecules and suggest a mechanism for how modulation of MHC I plasticity by tapasin catalyses peptide selection allosterically.


Assuntos
Galinhas/genética , Antígenos de Histocompatibilidade Classe I/genética , Sequência de Aminoácidos , Animais , Antígenos de Histocompatibilidade Classe I/imunologia , Proteínas de Membrana Transportadoras , Modelos Moleculares , Simulação de Dinâmica Molecular , Polimorfismo Genético , Análise de Componente Principal , Conformação Proteica
14.
Structure ; 22(2): 199-208, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24332716

RESUMO

Von Willebrand factor A (VWA) domains are versatile protein interaction domains with N and C termini in close proximity placing spatial constraints on overall protein structure. The 1.2 Å crystal structures of a collagen VI VWA domain and a disease-causing point mutant show C-terminal extensions that place the N and C termini at opposite ends. This allows a "beads-on-a-string" arrangement of multiple VWA domains as observed for ten N-terminal domains of the collagen VI α3 chain. The extension is linked to the core domain by a salt bridge and two hydrophobic patches. Comparison of the wild-type and a muscular dystrophy-associated mutant structure identifies a potential perturbation of a protein interaction interface and indeed, the secretion of mutant collagen VI tetramers is affected. Homology modeling is used to locate a number of disease-associated mutations and analyze their structural impact, which will allow mechanistic analysis of collagen-VI-associated muscular dystrophy phenotypes.


Assuntos
Colágeno Tipo VI/química , Colágeno Tipo VI/genética , Sequência de Aminoácidos , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Dados de Sequência Molecular , Distrofias Musculares/metabolismo , Mutação , Fenótipo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Fator de von Willebrand/química
16.
Biochem J ; 442(1): 105-18, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22115317

RESUMO

eEF2K (eukaryotic elongation factor 2 kinase) is a Ca2+/CaM (calmodulin)-dependent protein kinase which regulates the translation elongation machinery. eEF2K belongs to the small group of so-called 'α-kinases' which are distinct from the main eukaryotic protein kinase superfamily. In addition to the α-kinase catalytic domain, other domains have been identified in eEF2K: a CaM-binding region, N-terminal to the kinase domain; a C-terminal region containing several predicted α-helices (resembling SEL1 domains); and a probably rather unstructured 'linker' region connecting them. In the present paper, we demonstrate: (i) that several highly conserved residues, implicated in binding ATP or metal ions, are critical for eEF2K activity; (ii) that Ca2+/CaM enhance the ability of eEF2K to bind to ATP, providing the first insight into the allosteric control of eEF2K; (iii) that the CaM-binding/α-kinase domain of eEF2K itself possesses autokinase activity, but is unable to phosphorylate substrates in trans; (iv) that phosphorylation of these substrates requires the SEL1-like domains of eEF2K; and (v) that highly conserved residues in the C-terminal tip of eEF2K are essential for the phosphorylation of eEF2, but not a peptide substrate. On the basis of these findings, we propose a model for the functional organization and control of eEF2K.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico/efeitos dos fármacos , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Células HEK293 , Humanos , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Zinco/química
17.
Chembiochem ; 12(4): 556-8, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22238149

RESUMO

Over expression of proteins in E. coli frequently results in the production of inclusion bodies. Although ß(2) -microglobulin frequently forms fibrillar structures, our studies reveal significant differences between the protein in fibrils and inclusion bodies. This suggests that the formation of fibrils in inclusion bodies is dependent on the propensity of the protein to form fibrillar structures.


Assuntos
Amiloide/química , Corpos de Inclusão/química , Microglobulina beta-2/química , Humanos , Espectroscopia de Ressonância Magnética , Dobramento de Proteína
19.
J Biol Chem ; 283(9): 5577-88, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18089570

RESUMO

Calmodulin (CaM) binds in a Ca2+-dependent manner to the intracellular C-terminal domains of most group III metabotropic glutamate receptors (mGluRs). Here we combined mutational and biophysical approaches to define the structural basis of CaM binding to mGluR 7A. Ca2+/CaM was found to interact with mGluR 7A primarily via its C-lobe at a 1:1 CaM:C-tail stoichiometry. Pulldown experiments with mutant CaM and mGluR 7A C-tail constructs and high resolution NMR with peptides corresponding to the CaM binding region of mGluR 7A allowed us to define hydrophobic and ionic interactions required for Ca2+/CaM binding and identified a 1-8-14 CaM-binding motif. The Ca2+/CaM.mGluR 7A peptide complex displays a classical wraparound structure that closely resembles that formed by Ca2+/CaM upon binding to smooth muscle myosin light chain kinase. Our data provide insight into how Ca2+/CaM regulates group III mGluR signaling via competition with intracellular proteins for receptor-binding sites.


Assuntos
Calmodulina/química , Complexos Multiproteicos/química , Receptores de Glutamato Metabotrópico/química , Animais , Cálcio/química , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Calmodulina/genética , Calmodulina/metabolismo , Linhagem Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Quinase de Cadeia Leve de Miosina/química , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/fisiologia , Estrutura Quaternária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
20.
Biochemistry ; 44(39): 13043-50, 2005 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-16185072

RESUMO

The catalytic activity of Src-family kinases is regulated by association with its SH3 and SH2 domains. Activation requires displacement of intermolecular contacts by SH3/SH2 binding ligands resulting in dissociation of the SH3 and SH2 domains from the kinase domain. To understand the contribution of the SH3-SH2 domain pair to this regulatory process, the binding of peptides derived from physiologically relevant SH2 and SH3 interaction partners was studied for Lck and its relative Fyn by NMR spectroscopy. In contrast to Fyn, activating ligands do not induce communication between SH2 and SH3 domains in Lck. This can be attributed to the particular properties of the Lck SH3-SH2 linker which is shown to be extremely flexible thus effectively decoupling the behavior of the SH3 and SH2 domains. Measurements on the SH32 tandem from Lck further revealed a relative domain orientation that is distinctly different from that found in the Lck SH32 crystal structure and in other Src kinases. These data suggest that flexibility between SH2 and SH3 domains contributes to the adaptation of Src-family kinases to specific environments and distinct functions.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Domínios de Homologia de src , Quinases da Família src/química , Humanos , Ligantes , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Ressonância Magnética Nuclear Biomolecular , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-fyn/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...