Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Res ; 62(2): 193-197, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30364907

RESUMO

INTRODUCTION: Lameness is a painful and debilitating condition that affects dairy cows worldwide. The aim of this study was to determine the plasma concentration of norepinephrine, ß-endorphin, and substance P in dairy cows with lameness and different mobility scores (MS). MATERIAL AND METHODS: A total of 100 Friesian and Jersey cows with lameness (parity range: 1-6; weight: 400-500 kg; milk yield: 22-28 L a day, and lactation stage less than 230 days) were selected. Animals were selected and grouped according to MS (MS 0-3; n = 25), and plasma concentration of norepinephrine, substance P, and ß-endorphin was measured using ELISA. RESULTS: Cows with MS 3 had higher plasma concentrations of norepinephrine and substance P and lower plasma concentrations of ß-endorphins when compared to MS 0 cows. CONCLUSION: Variations in plasma concentration of norepinephrine, substance P, and ß-endorphin could be associated with intense pain states in dairy cows with lameness, but are insufficient to differentiate these states from the mildest pain states. Further studies are necessary in order to evaluate the potential use of these biomarkers in the detection of chronic bovine painful conditions.

2.
PeerJ ; 5: e3965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085760

RESUMO

The role of glial cells in pain modulation has recently gathered attention. The objective of this study was to determine healthy spinal microglia and astrocyte morphology and disposition in equine spinal cord dorsal horns using Iba-1 and GFAP/Cx-43 immunofluorescence labeling, respectively. Five adult horses without visible wounds or gait alterations were selected. Spinal cord segments were obtained post-mortem for immunohistochemical and immunocolocalization assays. Immunodetection of spinal cord dorsal horn astrocytes was done using a polyclonal goat antibody raised against Glial Fibrillary Acidic Protein (GFAP) and a polyclonal rabbit antibody against Connexin 43 (Cx-43). For immunodetection of spinal cord dorsal horn microglia, a polyclonal rabbit antibody against a synthetic peptide corresponding to the C-terminus of ionized calcium-binding adaptor molecule 1 (Iba-1) was used. Epifluorescence and confocal images were obtained for the morphological and organizational analysis. Evaluation of shape, area, cell diameter, cell process length and thickness was performed on dorsal horn microglia and astrocyte. Morphologically, an amoeboid spherical shape with a mean cell area of 92.4 + 34 µm2 (in lamina I, II and III) was found in horse microglial cells, located primarily in laminae I, II and III. Astrocyte primary stem branches (and cellular bodies to a much lesser extent) are mainly detected using GFAP. Thus, double GFAP/Cx-43 immunolabeling was needed in order to accurately characterize the morphology, dimension and cell density of astrocytes in horses. Horse and rodent astrocytes seem to have similar dimensions and localization. Horse astrocyte cells have an average diameter of 56 + 14 µm, with a main process length of 28 + 8 µm, and thickness of 1.4 + 0.3 µm, mainly situated in laminae I, II and III. Additionally, a close association between end-point astrocyte processes and microglial cell bodies was found. These results are the first characterization of cell morphology and organizational aspects of horse spinal glia. Iba-1 and GFAP/Cx-43 can successfully immune-label microglia and astrocytes respectively in horse spinal cords, and thus reveal cell morphology and corresponding distribution within the dorsal horn laminae of healthy horses. The conventional hyper-ramified shape that is normally visible in resting microglial cells was not found in horses. Instead, horse microglial cells had an amoeboid spherical shape. Horse protoplasmic astroglia is significantly smaller and structurally less complex than human astrocytes, with fewer main GFAP processes. Instead, horse astrocytes tend to be similar to those found in rodent's model, with small somas and large cell processes. Microglia and astrocytes were found in the more superficial regions of the dorsal horn, similarly to that previously observed in humans and rodents. Further studies are needed to demonstrate the molecular mechanisms involved in the neuron-glia interaction in horses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...