Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part C Methods ; 30(1): 38-48, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38115629

RESUMO

Donor cell-specific tissue-engineered (TE) implants are a promising therapy for personalized treatment of cardiovascular diseases, but current development protocols lack a stable longitudinal assessment of tissue development at subcellular resolution. As a first step toward such an assessment approach, in this study we establish a generalized labeling and imaging protocol to obtain quantified maturation parameters of TE constructs in three dimensions (3D) without the need of histological slicing, thus leaving the tissue intact. Focusing on intracellular matrix (ICM) and extracellular matrix (ECM) networks, multiphoton laser scanning microscopy (MPLSM) was used to investigate TE patches of different conditioning durations of up to 21 days. We show here that with a straightforward labeling procedure of whole-mount samples (so without slicing into thin histological sections), followed by an easy-to-use multiphoton imaging process, we obtained high-quality images of the tissue in 3D at various time points during development. The stacks of images could then be further analyzed to visualize and quantify the volume of cell coverage as well as the volume fraction and network of structural proteins. We showed that collagen and alpha-smooth muscle actin (α-SMA) volume fractions increased as normalized to full tissue volume and proportional to the cell count, with a converging trend to the final density of (4.0% ± 0.6%) and (7.6% ± 0.7%), respectively. The image analysis of ICM and ECM revealed a developing and widely branched interconnected matrix. We are currently working on the second step, that is, to integrate MPLSM endoscopy into a dynamic bioreactor system to monitor the maturation of intact TE constructs over time, thus without the need to take them out.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Engenharia Tecidual/métodos , Matriz Extracelular/química , Colágeno/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos
2.
Mol Imaging Biol ; 25(1): 3-17, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34779969

RESUMO

In recent years, the demand for non-destructive deep-tissue imaging modalities has led to interest in multiphoton endoscopy. In contrast to bench top systems, multiphoton endoscopy enables subcellular resolution imaging in areas not reachable before. Several groups have recently presented their development towards the goal of producing user friendly plug and play system, which could be used in biological research and, potentially, clinical applications. We first present the technological challenges, prerequisites, and solutions in two-photon endoscopic systems. Secondly, we focus on the applications already found in literature. These applications mostly serve as a quality check of the built system, but do not answer a specific biomedical research question. Therefore, in the last part, we will describe our vision on the enormous potential applicability of adult two-photon endoscopic systems in biological and clinical research. We will thus bring forward the concept that two-photon endoscopy is a sine qua non in bringing this technique to the forefront in clinical applications.


Assuntos
Pesquisa Biomédica , Endoscopia , Endoscopia/métodos , Diagnóstico por Imagem/métodos , Fótons
3.
Biomed Tech (Berl) ; 67(6): 461-470, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36094469

RESUMO

Bioreactors are important tools for the pre-conditioning of tissue-engineered heart valves. The current state of the art mostly provides for timed, physical and biochemical stimulation in the bioreactor systems according to standard protocols (SOP). However, this does not meet to the individual biological variability of living tissue-engineered constructs. To achieve this, it is necessary to implement (i) sensory systems that detect the actual status of the implant and (ii) controllable bioreactor systems that allow patient-individualized pre-conditioning. During the maturation process, a pulsatile transvalvular flow of culture medium is generated within the bioreactor. For the improvement of this conditioning procedure, the relationship between the mechanical and biochemical stimuli and the corresponding tissue response has to be analyzed by performing reproducible and comparable experiments. In this work, a technological framework for maturation experiments of tissue-engineered heart valves in a pulsating bioreactor is introduced. The aim is the development of a bioreactor system that allows for continuous control and documentation of the conditioning process to increase reproducibility and comparability of experiments. This includes hardware components, a communication structure and software including online user communication and supervision. Preliminary experiments were performed with a tissue-engineered heart valve to evaluate the function of the new system. The results of the experiment proof the adequacy of the setup. Consequently, the concept is an important step for further research towards controlled maturation of tissue-engineered heart valves. The integration of molecular and histological sensor systems will be the next important step towards a fully automated, self-controlled preconditioning system.


Assuntos
Próteses Valvulares Cardíacas , Humanos , Reprodutibilidade dos Testes , Reatores Biológicos , Engenharia Tecidual/métodos , Valvas Cardíacas/fisiologia
4.
Nat Commun ; 13(1): 4485, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918329

RESUMO

The benefit of molecularly-informed therapies in cancer of unknown primary (CUP) is unclear. Here, we use comprehensive molecular characterization by whole genome/exome, transcriptome and methylome analysis in 70 CUP patients to reveal substantial mutational heterogeneity with TP53, MUC16, KRAS, LRP1B and CSMD3 being the most frequently mutated known cancer-related genes. The most common fusion partner is FGFR2, the most common focal homozygous deletion affects CDKN2A. 56/70 (80%) patients receive genomics-based treatment recommendations which are applied in 20/56 (36%) cases. Transcriptome and methylome data provide evidence for the underlying entity in 62/70 (89%) cases. Germline analysis reveals five (likely) pathogenic mutations in five patients. Recommended off-label therapies translate into a mean PFS ratio of 3.6 with a median PFS1 of 2.9 months (17 patients) and a median PFS2 of 7.8 months (20 patients). Our data emphasize the clinical value of molecular analysis and underline the need for innovative, mechanism-based clinical trials.


Assuntos
Neoplasias Primárias Desconhecidas , Epigenômica , Genômica , Homozigoto , Humanos , Mutação , Neoplasias Primárias Desconhecidas/tratamento farmacológico , Neoplasias Primárias Desconhecidas/genética , Deleção de Sequência
5.
Artigo em Inglês | MEDLINE | ID: mdl-24483388

RESUMO

We study the stability conditions of a class of branching processes prominent in the analysis and modeling of seismicity. This class includes the epidemic-type aftershock sequence (ETAS) model as a special case, but more generally comprises models in which the magnitude distribution of direct offspring depends on the magnitude of the progenitor, such as the branching aftershock sequence (BASS) model and another recently proposed branching model based on a dynamic scaling hypothesis. These stability conditions are closely related to the concepts of the criticality parameter and the branching ratio. The criticality parameter summarizes the asymptotic behavior of the population after sufficiently many generations, determined by the maximum eigenvalue of the transition equations. The branching ratio is defined by the proportion of triggered events in all the events. Based on the results for the generalized case, we show that the branching ratio of the ETAS model is identical to its criticality parameter because its magnitude density is separable from the full intensity. More generally, however, these two values differ and thus place separate conditions on model stability. As an illustration of the difference and of the importance of the stability conditions, we employ a version of the BASS model, reformulated to ensure the possibility of stationarity. In addition, we analyze the magnitude distributions of successive generations of the BASS model via analytical and numerical methods, and find that the compound density differs substantially from a Gutenberg-Richter distribution, unless the process is essentially subcritical (branching ratio less than 1) or the magnitude dependence between the parent event and the direct offspring is weak.

6.
Phys Rev Lett ; 99(17): 179801; author reply 179802, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17995381
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...